
 Quick start

1. Download
git clone https://github.com/Ensembl/ensembl-vep.git

2. Install
cd ensembl-vep
perl INSTALL.pl

3. Test
./vep -i examples/homo_sapiens_GRCh38.vcf --cache

 Download documentation in PDF format

 Tutorial

 Download and install
Download

What's new in release 114

Installation

Using VEP in macOS

Using VEP in Windows

Docker

Singularity

Nextflow

 Data formats
Input

Output

 Running VEP
Options

 Annotation sources
Caches

GFF/GTF files

FASTA files

Databases

 Filtering results
Running filter_vep

Writing filters

 Custom annotations
Data formats

Options

 Plugins
Existing plugins

Using plugins

 Examples & use cases
Example commands

gnomAD

Conservation scores

dbNSFP

Structural variants

Pangenome assemblies

Citations and VEP users

 Other information
Performance

Multiple assemblies

Summarising annotation

Variant Effect Predictor Command line VEP

Use VEP to
analyse your
variation data
locally. No limits,
powerful, fast and
extendable,
command line
VEP is the way to
get the most out
of VEP and
Ensembl.

VEP is a powerful
and highly
configurable tool -
have a browse
through the
documentation.
You might also like to read up on the data formats that VEP uses, and the different ways you can access genome data. The VEP
script can annotate your variants with custom data, be extended with plugins, and use powerful filtering to find biologically
interesting results.

Beginners should have a run through the tutorial, or try the web interface first.

If you use VEP in your work, please cite our latest publication McLaren et. al. 2016 (doi:10.1186/s13059-016-0974-4)

Any questions? Send an email to the Ensembl developers' mailing list or contact the Ensembl Helpdesk.

 Documentation contents

https://www.ensembl.org/info/docs/tools/vep/script/VEP_script_documentation.pdf
https://www.ensembl.org/info/docs/tools/vep/script/vep_tutorial.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#download
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#new
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#macos
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#windows
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#docker
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#singularity
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#nextflow
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#input
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#basic
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#database
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html#filter_run
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html#filter_write
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_formats
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_options
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#plugins_existing
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#plugins_use
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#examples
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gerp
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#dbNSFP
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#StructVar
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#pangenomes
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#citations
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#faster
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#assembly
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#pick
https://www.ensembl.org/info/docs/tools/vep/script/index.html
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_tutorial.html
https://www.ensembl.org/info/docs/tools/vep/online/index.html
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4
https://www.ensembl.org/info/about/contact/
https://www.ensembl.org/Help/Contact

HGVS notations

RefSeq transcripts

Colocated variants

Normalising consequences

 FAQ
General questions

Web VEP questions

Command line VEP questions

https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#colocated
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#shifting
https://www.ensembl.org/info/docs/tools/vep/vep_faq.html
https://www.ensembl.org/info/docs/tools/vep/vep_faq.html#general
https://www.ensembl.org/info/docs/tools/vep/vep_faq.html#web
https://www.ensembl.org/info/docs/tools/vep/vep_faq.html#script

Variant Effect Predictor Tutorial

Install VEP

Have you downloaded VEP yet? Use git to clone it:

git clone https://github.com/Ensembl/ensembl-vep
cd ensembl-vep

VEP uses "cache files" or a remote database to read genomic data. Using cache files gives the best performance - let's set one up
using the installer:

perl INSTALL.pl

Hello! This installer is configured to install v114 of the Ensembl API for use by VEP.
It will not affect any existing installations of the Ensembl API that you may have.

It will also download and install cache files from Ensembl's FTP server.

Checking for installed versions of the Ensembl API...done
It looks like you already have v114 of the API installed.
You shouldn't need to install the API

Skip to the next step (n) to install cache files

Do you want to continue installing the API (y/n)?

If you haven't yet installed the API, type "y" followed by enter, otherwise type "n" (perhaps if you ran the installer before). At the next
prompt, type "y" to install cache files

Do you want to continue installing the API (y/n)? n
 - skipping API installation

VEP can either connect to remote or local databases, or use local cache files.
Cache files will be stored in /nfs/users/nfs_w/wm2/.vep
Do you want to install any cache files (y/n)? y

Downloading list of available cache files
The following species/files are available; which do you want (can specify multiple separated
by spaces):
1 : ailuropoda_melanoleuca_vep_114_ailMel1.tar.gz
2 : anas_platyrhynchos_vep_114_BGI_duck_1.0.tar.gz
3 : anolis_carolinensis_vep_114_AnoCar2.0.tar.gz
...
42 : homo_sapiens_vep_114_GRCh38.tar.gz
...

?

Type "42" (or the relevant number for homo_sapiens and GRCh38) to install the cache for the latest human assembly. This will take
a little while to download and unpack! By default VEP assumes you are working in human; it's easy to switch to any other species
using --species [species].

? 42
 - downloading https://ftp.ensembl.org/pub/release-
114/variation/vep/homo_sapiens_vep_114_GRCh38.tar.gz
 - unpacking homo_sapiens_vep_114_GRCh38.tar.gz

Success

By default VEP installs cache files in a folder in your home area ($HOME/.vep); you can easily change this using the -d flag when
running the installer. See the installer documentation for more details.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_species
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer

Run VEP

VEP needs some input containing variant positions to run. In their most basic form, this should just be a chromosomal location and
a pair of alleles (reference and alternate). VEP can also use common formats such as VCF and HGVS as input. Have a look at the
Data formats page for more information.

We can now use our cache file to run VEP on the supplied example file examples/homo_sapiens_GRCh38.vcf, which is a VCF
file containing variants from the 1000 Genomes Project, remapped to GRCh38:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache

2013-07-31 09:17:54 - Read existing cache info
2013-07-31 09:17:54 - Starting...
ERROR: Output file variant_effect_output.txt already exists. Specify a different output file
with --output_file or overwrite existing file with --force_overwrite

You may see this error message if you've already run VEP in the same directory. VEP tries not to trample over your existing files
unless you tell it to. So let's tell it to using --force_overwrite

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite

By default VEP writes to a file named "variant_effect_output.txt" - you can change this file name using -o. Let's have a look at the
output.

head variant_effect_output.txt

ENSEMBL VARIANT EFFECT PREDICTOR v114.0
Output produced at 2017-03-21 14:51:27
Connected to homo_sapiens_core_114_38 on ensembldb.ensembl.org
Using cache in /homes/user/.vep/homo_sapiens/114_GRCh38
Using API version 114, DB version 114
polyphen version 2.2.2
sift version sift5.2.2
COSMIC version 78
ESP version 20141103
gencode version GENCODE 25
genebuild version 2014-07
HGMD-PUBLIC version 20162
regbuild version 16
assembly version GRCh38.p7
ClinVar version 201610
dbSNP version 147
Column descriptions:
Uploaded_variation : Identifier of uploaded variant
Location : Location of variant in standard coordinate format (chr:start or chr:start-end)
Allele : The variant allele used to calculate the consequence
Gene : Stable ID of affected gene
Feature : Stable ID of feature
Feature_type : Type of feature - Transcript, RegulatoryFeature or MotifFeature
Consequence : Consequence type
cDNA_position : Relative position of base pair in cDNA sequence
CDS_position : Relative position of base pair in coding sequence
Protein_position : Relative position of amino acid in protein
Amino_acids : Reference and variant amino acids
Codons : Reference and variant codon sequence
Existing_variation : Identifier(s) of co-located known variants
Extra column keys:
IMPACT : Subjective impact classification of consequence type
DISTANCE : Shortest distance from variant to transcript
STRAND : Strand of the feature (1/-1)
FLAGS : Transcript quality flags
#Uploaded_variation Location Allele Gene Feature Feature_type
Consequence ...
rs7289170 22:17181903 G ENSG00000093072 ENST00000262607 Transcript
synonymous_variant ...

https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#input
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_force_overwrite
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_output_file

rs7289170 22:17181903 G ENSG00000093072 ENST00000330232 Transcript
synonymous_variant ...

The lines starting with "#" are header or meta information lines. The final one of these (highlighted in blue above) gives the column
names for the data that follows. To see more information about VEP's output format, see the Data formats page.

We can see two lines of output here, both for the uploaded variant named rs7289170. In many cases, a variant will fall in more than
one transcript. Typically this is where a single gene has multiple splicing variants. Here our variant has a consequence for the
transcripts ENST00000262607 and ENST00000330232.

In the consequence column, we can see the consequence term synonymous_variant. This is terms forms part of an ontology for
describing the effects of sequence variants on genomic features, produced by the Sequence Ontology (SO) . See our predicted
data page for a guide to the consequence types that VEP and Ensembl uses.

Let's try something a little more interesting. SIFT is an algorithm for predicting whether a given change in a protein sequence will be
deleterious to the function of that protein. VEP can give SIFT predictions for most of the missense variants that it predicts. To do
this, simply add --sift b (the b means we want both the prediction and the score):

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --sift b

SIFT calls variants either "deleterious" or "tolerated". We can use the VEP's filtering tool to find only those that SIFT considers
deleterious:

./filter_vep -i variant_effect_output.txt -filter "SIFT is deleterious" | grep -v "##" | head
-n5

#Uploaded_variation Location Allele Gene Feature ... Extra
rs2231495 22:17188416 C ENSG00000093072 ENST00000262607 ...
SIFT=deleterious(0.05)
rs2231495 22:17188416 C ENSG00000093072 ENST00000399837 ...
SIFT=deleterious(0.05)
rs2231495 22:17188416 C ENSG00000093072 ENST00000399839 ...
SIFT=deleterious(0.05)
rs115736959 22:19973143 A ENSG00000099889 ENST00000263207 ...
SIFT=deleterious(0.01)

Note that the SIFT score appears in the "Extra" column, as a key/value pair. This column can contain multiple key/value pairs
depending on the options you give to VEP. See the Data formats page for more information on the fields in the Extra column.

You can also configure how VEP writes its output using the --fields flag.

You'll also see that we have multiple results for the same gene, ENSG00000093072. Let's say we're only interested in what is
considered the canonical transcript for this gene (--canonical), and that we want to know what the commonly used gene symbol
from HGNC is for this gene (--symbol). We can also use a UNIX pipe to pass the output from VEP directly into the filtering tool:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --sift b --canonical --
symbol --tab --fields Uploaded_variation,SYMBOL,CANONICAL,SIFT -o STDOUT | \
./filter_vep --filter "CANONICAL is YES and SIFT is deleterious"

...

#Uploaded_variation SYMBOL CANONICAL SIFT
rs2231495 CECR1 YES deleterious(0.05)
rs115736959 ARVCF YES deleterious(0.01)
rs116398106 ARVCF YES deleterious(0)
rs116782322 ARVCF YES deleterious(0)
...
rs115264708 PHF21B YES deleterious(0.03)

So now we can see all of the variants that have a deleterious effect on canonical transcripts, and the symbol for their genes. Nice!

For species with an Ensembl database of variants, VEP can be configured to annotate your input with identifiers and frequency
data from variants co-located with your input data. For human, VEP's cache contains frequency data from 1000 Genomes, NHLBI-
ESP and ExAC. Since our input file is from 1000 Genomes, let's add frequency data using --af_1kg:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --af_1kg -o STDOUT | grep
-v "##" | head -n2

https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output
http://www.sequenceontology.org/
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_sift
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fields
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_canonical
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_symbol
https://www.ensembl.org/info/genome/variation/species/species_data_types.html#sources
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg

#Uploaded_variation Location Allele Gene Feature ...
Existing_variation Extra
rs7289170 22:17181903 G ENSG00000093072 ENST00000262607 ... rs7289170
IMPACT=LOW;STRAND=-1;AFR_AF=0.2390;AMR_AF=0.2003;EAS_AF=0.0456;EUR_AF=0.3211;SAS_AF=0.1401

We can see frequency data for the AFR, AMR, EAS, EUR and SAS continental population groupings; these represent the
frequency of the alternate (ALT) allele from our input (G in the case of rs7289170). Note that the Existing_variation column is
populated by the identifier of the variant found in the VEP cache (and that it corresponds to the identifier from our input in
Uploaded_variation). To retrieve only this information and not the frequency data, we could have used --check_existing (--af_1kg
silently switches on --check_existing).

Over to you!

This has been just a short introduction to the capabilities of VEP - have a look through some more of the options, see them all on
the command line using --help, or try using the shortcut --everything which switches on almost all available output fields! Try out the
different options in the filtering tool, and if you're feeling adventurous why not use some of your own data to annotate your variants
or have a go with a plugin or two.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_existing
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_help
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_everything
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html

Variant Effect Predictor Download and install

Download

Download ensembl-vep package (see below the different ways to download it) and then follow the installation instructions.

Using Git

 Clone the Git repository

Use git to download the ensembl-vep package:

git clone https://github.com/Ensembl/ensembl-vep.git
cd ensembl-vep

 Update to a newer version

To update from a previous version:

cd ensembl-vep
git pull
git checkout release/114
perl INSTALL.pl

 Use an older version

To use an older version (this example shows how to set up release 87):

cd ensembl-vep
git checkout release/87
perl INSTALL.pl

Download the Zipped package file

Users without the git utility installed may download a zip file from GitHub, though we would always recommend using git if possible.

curl -L -O https://github.com/Ensembl/ensembl-vep/archive/release/114.zip
unzip 114.zip
cd ensembl-vep-release-114/

Previous versions (ensembl-tools)

Previously VEP was available as part of the ensembl-tools package (see the Ensembl archive site for documentation). The following
downloads are available for archival purposes.

Download version 87 (Ensembl 87)

Download version 86 (Ensembl 86)

Download version 85 (Ensembl 85)

Download version 84 (Ensembl 84)

Download version 83 (Ensembl 83)

Download version 82 (Ensembl 82)

Download version 81 (Ensembl 81)

Download version 80 (Ensembl 80)

Download version 79 (Ensembl 79)

Download version 78 (Ensembl 78)

Download version 77 (Ensembl 77)

http://e87.ensembl.org/info/docs/tools/vep/script/index.html
https://github.com/Ensembl/ensembl-tools/archive/release/87.zip
https://github.com/Ensembl/ensembl-tools/archive/release/86.zip
https://github.com/Ensembl/ensembl-tools/archive/release/85.zip
https://github.com/Ensembl/ensembl-tools/archive/release/84.zip
https://github.com/Ensembl/ensembl-tools/archive/release/83.zip
https://github.com/Ensembl/ensembl-tools/archive/release/82.zip
https://github.com/Ensembl/ensembl-tools/archive/release/81.zip
https://github.com/Ensembl/ensembl-tools/archive/release/80.zip
https://github.com/Ensembl/ensembl-tools/archive/release/79.zip
https://github.com/Ensembl/ensembl-tools/archive/release/78.zip
https://github.com/Ensembl/ensembl-tools/archive/release/77.zip

Download version 76 (Ensembl 76)

Download version 75 (Ensembl 75)

Download version 74 (Ensembl 74)

Download version 73 (Ensembl 73)

Download version 72 (Ensembl 72)

Download version 71 (Ensembl 71)

Download version 2.8 (Ensembl 70)

Download version 2.7 (Ensembl 69)

Download version 2.6 (Ensembl 68)

Download version 2.5 (Ensembl 67)

Download version 2.4 (Ensembl 66)

Download version 2.3 (Ensembl 65)

Download version 2.2 (Ensembl 64 - ensembl-tools/scripts/variant_effect_predictor)

Download version 2.1 (Ensembl 63)

Download version 2.0 (Ensembl 62 - ensembl-variation/scripts/examples)

What's new?

New in version 114 (October 2024)

Support for https protocol when downloading FTP files and adding GitHub Token to increase rate limit in VEP install script.

Plugin support added to REST for:

Paralogues

Plugin data version updated:

dbNSFP (from 4.7c to 4.9c)

LOEUF (from gnomAD v2.1.1 to gnomAD v4.1)

Plugin deprecated:

DisGeNET

Mastermind (Only from REST)

Previous version history - from version 88:

New in version 113 (October 2024)

gnomAD frequency data updated to v4.1 for both genomes and exomes.

Support for GENCODE primary transcript set added. See, --gencode_primary and --flag_gencode_primary.

Support added for --mane, --mane_select, and --canonical when GFF/GTF file used as annotation source.

Nextflow VEP now suppots other input data formats besides VCF. For supported formats see - Data formats.

Plugin support added to REST and Web for:

RiboseqORFs

REVEL

ClinPred

Plugin support added to Web for:

Paralogues

Plugin support added to REST for:

LOEUF

Plugin data version updated for CADD (v1.6 to v1.7) and dbNSFP (4.5c to 4.7c).

https://github.com/Ensembl/ensembl-tools/archive/release/76.zip
https://github.com/Ensembl/ensembl-tools/archive/release/75.zip
https://github.com/Ensembl/ensembl-tools/archive/release/74.zip
https://github.com/Ensembl/ensembl-tools/archive/release/73.zip
https://github.com/Ensembl/ensembl-tools/archive/release/72.zip
https://github.com/Ensembl/ensembl-tools/archive/release/71.zip
https://github.com/Ensembl/ensembl-tools/archive/release/70.zip
https://github.com/Ensembl/ensembl-tools/archive/release/69.zip
https://github.com/Ensembl/ensembl-tools/archive/release/68.zip
https://github.com/Ensembl/ensembl-tools/archive/release/67.zip
https://github.com/Ensembl/ensembl-tools/archive/release/66.zip
https://github.com/Ensembl/ensembl-tools/archive/release/65.zip
https://github.com/Ensembl/ensembl-tools/archive/release/64.zip
https://github.com/Ensembl/ensembl-variation/archive/release/63.zip
https://github.com/Ensembl/ensembl-variation/archive/release/62.zip
https://github.com/Ensembl/VEP_plugins/blob/release/114/Paralogues.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/dbNSFP.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/LOEUF.pm
https://github.com/Ensembl/VEP_plugins/blob/release/113/DisGeNET.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/Mastermind.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gencode_primary
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_flag_gencode_primary
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane_select
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_canonical
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#input
http://github.com/Ensembl/VEP_plugins/blob/release/114/RiboseqORFs.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/REVEL.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/ClinPred.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/Paralogues.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/LOEUF.pm

New in version 112 (May 2024)

Enhanced Structural Variant Support:

Added support for CNV:TR

Enabled the use of chromosome synonyms in breakends

Report consequences for each breakend and enable the input of single breakends

New plugins (supported on CLI, Web and REST):

AlphaMissense - annotates missense variants with the pre-computed AlphaMissense pathogenicity scores. AlphaMissense
is a deep learning model developed by Google DeepMind that predicts the pathogenicity of single nucleotide missense
variants.

New plugins (supported on CLI and Web):

RiboseqORFs - uses a standardized catalog of human Ribo-seq ORFs to re-calculate consequences for variants located in
these translated regions

New plugins (supported on CLI):

Paralogues - fetches variants overlapping the genomic coordinates of amino acids aligned between paralogue proteins

AVADA - Automatic VAriant evidence DAtabase is a novel machine learning tool that uses natural language processing to
automatically identify pathogenic genetic variant evidence in full-text primary literature about monogenic disease and convert
it to genomic coordinates

GeneBe - A plugin kindly contributed by the GeneBe team, it retrieves automatic ACMG variant classification data from
https://genebe.net/

PhenotypeOrthologous A VEP plugin that retrieves phenotype information associated with orthologous genes from model
organisms

Plugin support added to REST and Web for:

CADD_SV

CADD scores for Sus scrofa

Dosage Sensitivity

Enformer

New in version 111 (January 2024)

New option --individual_zyg returns a single list of individuals and their zygosity (instead of a separate line of output for each
individual and variant combination like in --individual)

Custom annotation has been improved with the following options:

num_records to limit the number of matching records (50 by default)

summary_stats to calculate summary statistics (min, mean, max, count, sum) using annotation scores (not used by default)

New plugin (supported on CLI, REST and web):

OpenTargets - adds locus-to-gene (L2G) scores to predict causal genes at GWAS loci from Open Targets Genetics

New plugin (supported on CLI and REST):

Enformer - adds pre-calculated predictions of variant impact on gene expression

New plugins (supported on CLI):

BayesDel - adds a deleteriousness meta-score combining multiple deleteriousness predictors

DeNovo - identifies de novo variants in a VCF file. This plugin requires a pedigree (.ped) file

SpliceVault - predicts exon-skipping events and activated cryptic splice sites based on the most common mis-splicing
events around a splice site

DosageSensitivity - annotates the likelihood of a gene being haploinsufficient or triplosensitive

VARITY - adds pre-calculated pathogenicity scores of rare human missense variants

New in version 110 (July 2023)

New plugins (supported on CLI):

TranscriptAnnotator - a VEP plugin that annotates variant-transcript pairs

http://github.com/Ensembl/VEP_plugins/blob/release/114/AlphaMissense.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/RiboseqORFs.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/Paralogues.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/AVADA.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/GeneBe.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/PhenotypeOrthologous.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/CADD.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/CADD.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/DosageSensitivity.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/Enformer.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_individual_zyg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_individual
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#opt_num_records
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#opt_summary_stats
http://github.com/Ensembl/VEP_plugins/blob/release/114/OpenTargets.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/Enformer.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/BayesDel.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/DeNovo.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/SpliceVault.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/DosageSensitivity.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/VARITY.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/TranscriptAnnotator.pm

New Plugins (supported on CLI, REST and web):

Geno2MP - adds information from Geno2MP, a web-accessible database of rare variant genotypes linked to phenotypic
information

MaveDB - adds information from MaveDB, a database that holds experimentally determined measures of variant effect
New in version 109 (February 2023)

VEP Docker image now includes all VEP plugins

New plugin (supported on CLI):

GWAS - reports genome-wide association study data from GWAS catalog

Plugins now available in REST and web:

UTRAnnotator - annotates the effect of 5' UTR variant especially for variant creating/disrupting upstream ORFs

Plugins now available in REST:

NMD - predicts if a variant allows transcript to escape nonsense-mediated mRNA decay based on certain rules

Plugin LOEUF replaces Loftool in the web with more recent ‘loss-of-function’ score for variants

Deprecated Plugins:

miRNA - this plugin was fully deprecated in favour of --mirna flag (in web and REST)

ExAC - this plugin was deprecated given that VEP cache includes ExAC data as part of gnomAD

SIFT version has been updated from 5.2.2 to 6.2.1 (except for human GRCh37)

PolyPhen-2 version has been updated from 2.2.2 to 2.2.3 (except for human GRCh37)

New in version 108 (October 2022)

New plugin (supported on CLI, REST, and web):

mutfunc - predicts destabilization of protein structure, interaction and others features by a variant (GRCh38 only)

Plugin feature extension:

IntAct - 4 new species are now supported - rat, chicken (red jungle fowl), yeast, and arabidopsis

New in version 107 (July 2022)

New plugin (supported on CLI, REST, and web):

EVE - annotates human variants using EVA classification method based solely on evolutionary sequences (GRCh38 only)

Plugins now available in REST and web (already available in CLI):

GO - retrieves Gene Ontology terms associated with transcripts/translations

IntAct - annotates human variants which fall in interaction sites, as described in the IntAct database

Plugins now available in web (already available in CLI):

NMD - predicts if a stop_gained variant allows transcript to escape nonsense-mediated mRNA decay based on certain
rules

Readthrough transcripts are now removed from cache

Transcripts of biotype ‘artifact’ which are artifactual duplication are now removed from cache and not accessible using database

gnomaAD allele frequencies are now available for exomes and genomes separately through —af_gnomade and —af_gnomadg
options respectively. The —af_gnomad option have same function as --af_gnomade.

New in version 106 (April 2022)

New plugins for command line use:

IntAct - annotates human variants which fall in interaction sites, as described in the IntAct database

CAPICE - integrates scored from a machine-learning-based method for prioritizing pathogenic variants (GRCh37 only)

Nextflow pipeline:

A new configurable pipeline is available to run Ensembl VEP efficiently on large scale VCF

New in version 105 (December 2021)

http://github.com/Ensembl/VEP_plugins/blob/release/114/Geno2MP.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/MaveDB.pm
https://hub.docker.com/r/ensemblorg/ensembl-vep
http://github.com/Ensembl/VEP_plugins/blob/release/114/GWAS.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/UTRAnnotator.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/NMD.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/miRNA.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/ExAC.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/mutfunc.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/IntAct.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/EVE.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/GO.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/IntAct.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/NMD.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/IntAct.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/CAPICE.pm

3 new Sequence Ontology terms are reported for more detailed splice consequence annotation

splice_donor_5th_base_variant (SO:0001787)

splice_donor_region_variant (SO:0002170)

splice_polypyrimidine_tract_variant (SO:0002169)

New plugins

ClinPred - adds pre-calculated scores from ClinPred which helps identify disease-relevant missense variants

NMD - predicts whether a stop-gained variant will allow a transcript to escape nonsense-mediated decay

Condel scores are no longer available via the VEP web interface as they have not been updated since 2014 and newer scores
like CADD and REVEL are available

New in version 104 (May 2021)

Human GRCh37 cache files now include dbSNP 154!

--var_synonyms output structure has been altered when used with --json

VEP Plugins:

dbNSFP - now supports matching by peptides

SpliceAI - now compares gene symbols to improve score accuracy

New in version 103 (February 2021)

New: Variant Recoder is now available as a web tool

Variant Recoder output is now allele specific

Web VEP Options:

Variant Synonyms are now available through the web interface

MasterMind results are available through the REST and web interfaces

VEP Options:

--mane : Now provides additional MANE Plus Clinical annotations alongside MANE Select

--mane_select : Returns MANE Select annotations

New in version 102 (November 2020)

VEP options:

--uniprot: Now we report precise Ensembl translation to UniProt isoform mappings.

--spdi - new: Add genomic SPDI notation.

Web VEP options:

Shifting variants in the 3' direction with --shift_3prime and --shift_genomic is now supported through the web interface.

SpliceAI - new: SpliceAI pre-calculated scores are available through the web interface.

VEP filter options:

--soft_filter - new: Option to only flag the failing variation in the FILTER column and keep the entries in the output VCF file.

New in version version 101 (August 2020)

New options:

--var_synonyms: Report known synonyms for colocated variants. Must be used with --cache.

VEP plugins:

neXtProt - new: neXtProt retrieves comprehensive human-centric protein-related data for missense variants

New in version 100 (April 2020)

Human GRCh37 variant and phenotype data has been updated with multiple data sets including dbSNP153, ClinVar’s 201912
release and COSMIC release 90

http://www.sequenceontology.org/miso/current_release/term/SO:0001787
http://www.sequenceontology.org/miso/current_release/term/SO:0002170
http://www.sequenceontology.org/miso/current_release/term/SO:0002169
http://github.com/Ensembl/VEP_plugins/blob/release/114/ClinPred.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/NMD.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_var_synonyms
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_json
http://github.com/Ensembl/VEP_plugins/blob/release/114/dbNSFP.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/SpliceAI.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane_select
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_uniprot
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_spdi
https://www.ncbi.nlm.nih.gov/variation/notation/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_3prime
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_genomic
http://github.com/Ensembl/VEP_plugins/blob/release/114/SpliceAI.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html#opt_softfilter
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_var_synonyms
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
http://github.com/Ensembl/VEP_plugins/blob/release/114/neXtProt.pm

The GRCh37 RefSeq transcript set has been updated to NCBI's 1st November 2019 release (initially annotated on
GCF_000001405.25)!

New options:

--shift_3prime: Right aligns all variants relative to their associated transcripts prior to consequence calculation

--shift_genomic: Right aligns all variants, including intergenic variants, before consequence calculation and updates the
Location field

VEP plugins:

SpliceAI - new: SpliceAI is a deep neural network, developed by Illumina, Inc that predicts splice junctions from an arbitrary
pre-mRNA transcript sequence.

New in version 99 (January 2020)

Human GRCh38 cache files now contain variants from dbSNP153

New options have been added to REST:

vcf_string: VEP can now provide a VCF-like string representing the input variant

transcript_version: Add version numbers to Ensembl transcript identifiers

SpliceRegion: Provides granular predictions of splicing effects (Details)

LoF: LOFTEE implements a set of filters to predict LoF (loss-of-function) variants. (Details)

New in version 98 (September 2019)

Human GRCh38 cache files now contain variants from dbSNP152

This employs a new clustering strategy which may result in different rsIDs being reported as known variants for some insertions
and deletions - for more information see here

--clin_sig_allele has been updated to be used by default

New options:

--custom_multi_allelic: prevents VEP from assuming that comma separated lists in custom annotations are allele specific

MANE attributes are now included within VEP cache files, web VEP and REST

VEP plugins:

satMutMPRA - new: measures variant effects on gene RNA expression for 21 regulatory elements

VEP Installer:

HTSLib v1.9 is now installed by default (previously v1.3.2)

Bio::DB::HTS v2.11 is now installed by default (previously v2.9)

New option 'PLUGINSDIR' allows you to specify the installation directory for plugins

New in version 97 (July 2019)

Allele-specific clinical significance reported (it was previously variant-specific).

New options:

--clin_sig_allele: report allele specific clinical significance.

--mane: report if a transcript is the MANE Select.

--max_sv_size: extend the maximum Structural Variant size VEP can process.

--no_check_variants_order: permit the use of unsorted input files (WARNING - this is slow and requires more memory).

--overlaps: report the proportion and length of a transcript overlapped by a structural variant in VCF format.

Include the --mane option into the --everything group option.

Update --pick and --pick_order to support MANE Select transcripts.

Check if the input variants are ordered: non ordered variants slow down VEP and require more memory.

Skip annotation of complex and long structural variants and display a warning message.

Variant recoder: add an option --vcf_string to return results in VCF format.

VEP plugins:

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_3prime
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_genomic
http://github.com/Ensembl/VEP_plugins/blob/release/114/SpliceAI.pm
https://raw.githubusercontent.com/ensembl-variation/VEP_plugins/master/SpliceRegion.pm
https://github.com/konradjk/loftee/blob/master/README.md
http://www.ensembl.info/2019/08/29/coming-soon-to-an-ensembl-near-you-dbsnp-2-0/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_clin_sig_allele
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_custom_multi_allelic
http://github.com/Ensembl/VEP_plugins/blob/release/114/satMutMPRA.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_clin_sig_allele
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_max_sv_size
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_check_variants_order
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_overlaps
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_mane
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_everything
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick_order
https://www.ensembl.org/info/docs/tools/vep/recoder/index.html#opt_vcf_string

FunMotifs - new: provide information about overlapping tissue-specific transcription factor motifs.

Mastermind - new: reports variants that have clinical evidence cited in the medical literature.

StructuralVariantOverlap - new: provide information from overlapping structural variants.

G2P - update: now the plugin can be run offline.

Phenotypes - update: change the format of the data file (from BED to GVF).

VEP web tool: the transcript identifiers are now returned with versions unless otherwise specified.

VEP installer: tabix-indexed variant cache files are now installed by default.

New in version 96 (April 2019)

Add SPDI format for VEP (input) and Variant Recoder (input and output).

Update VEP cache with gnomAD 2.1 (human).

Update the Docker VEP base image to Ubuntu 18.04.

Retire deprecated flags: --gmaf, --maf_1kg, --maf_esp, --maf_exac, --check_alleles, --html, --gvf.

Retire legacy code about the pileup input format, which is no longer supported.

Deprecate the installation flag "--VERSION"

Force numbers to be encoded as numbers in JSON output

VEP plugins:

NearestExonJB - new: find the nearest exon junction boundary to a coding sequence variant.

Conservation - update: can use BigWig files instead of the Ensembl Compara database.

dbNSFP - update: support of the dbNSFP data version 4.

Phenotypes - update: possibility to report the phenotype description(s) and other information.

PostGAP - update: replace the plugin name POSTGAP to PostGAP.

New in version 95 (January 2019)

The VEP parser is now more permissive for the GFF files (ID attribute only required for genes and transcripts)

Add new option --show_ref_allele to include the allele reference in the VEP default output and the tab output formats

Add a warning message when the VEP annotations INFO field hasn't been found/recognised in the VCF input file

VEP Docker image:

Reduce the size of the VEP Docker image by about 45%.

Include the Linkage disequilibrium script in the VEP Docker image, making possible to run the LD plugin

New VEP plugins:

Reference quality

OpenTargets results (POSTGAP)

Single letter amino acid for HGVS

New in version 94 (October 2018)

RefSeq transcript version updated.

Minor updates on the VEP web tool interface.

When the input data format is not specified on the command line, VEP attempts to detect it. The assumed format is now reported
in verbose mode (--verbose).

VEP assigns assigned the consequence types TF_binding_site_variant, TFBS_ablation, TFBS_fusion, TFBS_amplification and
TFBS_translocation to human and mouse variants which overlapped motif features. These annotations will not be available in
VEP caches for human in release 94 so must be added as a custom annotation.

New in version 93 (July 2018)

Update the JSON output format (allele frequencies) for the Ensembl REST - VEP endpoints. See more information .

The new Ensembl release brings more frequency data from gnomAD .

Add the possibility to print the content of the FILTER column (from the VCF custom annotation files) in the output.

http://github.com/Ensembl/VEP_plugins/blob/release/114/FunMotifs.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/Mastermind.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/StructuralVariantOverlap.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/G2P.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/Phenotypes.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/NearestExonJB.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/Conservation.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/dbNSFP.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/Phenotypes.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/PostGAP.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_show_ref_allele
http://github.com/Ensembl/VEP_plugins/blob/release/114/ReferenceQuality.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/POSTGAP.pm
http://github.com/Ensembl/VEP_plugins/blob/release/114/SingleLetterAA.pm
https://www.ensembl.org/Tools/VEP
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_verbose
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
http://rest.ensembl.org/#VEP
http://github.com/Ensembl/ensembl-rest/wiki/Change-log#70---2018-06
http://gnomad.broadinstitute.org/

Include the Ensembl/ensembl-xs repository in Docker image to speed up the VEP container.

Add a new consequence 'extended_intronic_splice_region_variant' in the SpliceRegion VEP plugin.

New in version 92 (April 2018)

New VEP plugin REVEL (see REVEL plugin).

Get ambiguity code with --ambiguity.

GFF/GTF files with exons assigned to multiple transcripts are now supported.

Improved 1000 Genomes Project frequencies.

New in version 91 (December 2017)

New input format "region" allows REST-style input to VEP.

Replace your input variant reference allele with the correct one from the genome with --lookup_ref.

Add version numbers to Ensembl transcripts with --transcript_version.

New in version 90 (August 2017)

gnomAD exomes allele frequencies now available with --af_gnomad, replacing ExAC. gnomAD genomes and ExAC are
available via custom annotation.

VEP is now available as a Docker image.

RefSeq transcripts in VEP cache files are now "corrected" from the reference genome sequence.

VEP's algorithm for matching colocated known variants has been overhauled - details.

Change VEP's default (5kb) up/downstream distance with --distance. This supercedes the functionality of the UpDownDistance
VEP plugin.

Feed input directly to VEP with --input_data.

Suppress header output with --no_headers.

Detailed installation instructions for Bio::DB::BigFile to access bigWig custom annotation files.

New in version 89 (May 2017)

exclude known variants with unknown (null) alleles with --exclude_null_alleles.

write compressed output with --compress_output.

improved matching of alleles in custom VCF files.

API perldoc documentation added.

New in version 88 (March 2017)

ensembl-vep is now the officially supported version of VEP

Documentation updated to reflect switch to ensembl-vep. See the Ensembl archive site for documentation of the obsolete
ensembl-tools VEP.

The VEP script is now named simply vep (formerly variant_effect_predictor.pl or vep.pl)

Directly use tabix-indexed GFF/GTF files as annotation sources

Allele-specific reporting of frequencies (--af and more) and custom VCF annotations

--check_existing now compares alleles by default, disable with --no_check_alleles

Report the highest allele frequency observed in any population from 1000 genomes, ESP or ExAC using --max_af

Get genomic HGVS nomenclature with --hgvsg

Find the gene or transcript with the nearest transcription start site (TSS) to each input variant with --nearest

filter_vep supports field/field comparisons e.g. AFR_AF > #EUR_AF

Exclude predicted (XM and XR) transcripts when using RefSeq or merged cache with --exclude_predicted

Filter transcripts used for annotation with --transcript_filter

pileup input format no longer supported
Older versions (ensembl-tools) - until version 87:

http://github.com/Ensembl/ensembl-xs
http://github.com/Ensembl/VEP_plugins/blob/release/114/SpliceRegion.pm
http://www.ncbi.nlm.nih.gov/pubmed/27666373
http://github.com/Ensembl/VEP_plugins/blob/release/92/REVEL.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_ambiguity
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#region
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_lookup_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_transcript_version
http://gnomad.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_gnomade
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#colocated
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_distance
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_input_data
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_headers
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_exclude_null_alleles
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_compress_output
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
http://e87.ensembl.org/info/docs/tools/vep/script/index.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_existing
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_max_af
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvsg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_nearest
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_exclude_predicted
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_transcript_filter

Versions of VEP up to and including 87 were released as part of the ensembl-tools package. See download links above.

New in version 87 (December 2016)

Shiny new code available for beta testing!

Some minor speed optimisations

Improve checks for valid chromosome names in input

Haplosaurus beta released - generate whole-transcript haplotype sequences from phased genotype data

New in version 86 (October 2016)

Chromosome synonyms supported when using VEP caches; may be loaded manually with --synonyms

New in version 85 (July 2016)

--pick now uses translated length instead of genomic transcript length

Support for epigenomes in regulatory features

New in version 84 (March 2016)

Add tab-delimited output option

Add transcript flags indicating if the transcript is 5'- or 3'-incomplete

Improve annotation of long variants where invariant parts of the alternate allele overlap splice regions

New in version 83 (December 2015)

Speed:

Basic consequence calculations up to 2x faster than version 82

HGVS calculations up to 10x faster

FASTA sequence retrieval implements caching

Add ExAC project frequencies with --af_exac

APPRIS isoform annotations now available with --appris and used by --pick and others to prioritise VEP annotations

New in version 82 (September 2015)

Faster FASTA file access using Bio::DB::HTS/htslib and bgzipped FASTA files

Flag genes with phenotype associations

Some plugins now available for use via the web and REST interfaces

New in version 81 (July 2015)

Plugin registry means plugins can be installed from the VEP installer

GFF format now supported by VEP's cache converter

Fixes and improvements for sequence retrieval from FASTA files

New in version 80 (May 2015)

Flag added indicating if an overlapping known variant is associated with a phenotype, disease or trait

HGVS notations are now 3'-shifted by default (use --shift_hgvs to force enable/disable)

Source version information added to caches; see output file headers or use --show_cache_info

Get the variant class using --variant_class

CCDS status added to categories used by --pick flag (and others)

New in version 79 (March 2015)

Focus on performance and stability: ~100% faster than version 78 and a new test suite

New guide to getting VEP running faster

1000 Genomes Phase 3 data available in GRCh37 cache download (GRCh38 coming soon, see docs to access now)

VCF output has changed slightly to match output from other tools

Impact modifier added for each consequence type

https://github.com/Ensembl/ensembl-vep
https://github.com/Ensembl/ensembl-vep#haplo
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_synonyms
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#tab
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output
http://exac.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_exac
https://www.ensembl.org/Help/Glossary?id=521
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_appris
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gene_phenotype
https://www.ensembl.org/Tools/VEP
http://rest.ensembl.org/#VEP
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gtf
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_show_cache_info
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_variant_class
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#faster
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#1kg_p3
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#vcfout

New in version 78 (December 2014)

Customise --pick using --pick_order

Get transcript support level using --tsl

New in version 77 (October 2014)

Get the SO feature type of regulatory features using --regulatory and --biotype

New in version 76 (August 2014)

VEP now supports caches from multiple assemblies (--assembly) on the same software version - e.g. human builds GRCh37 and
GRCh38

Protein identifiers from UniProt (SWISSPROT, TrEMBL and UniParc) now available using --uniprot

VEP can generate JSON output using --json

Two new analysis set options - --gencode_basic and the merged Ensembl/RefSeq cache (--merged)

Non-RefSeq transcripts now excluded by default when using the RefSeq or merged cache; use --all_refseq to include them

Let VEP pick one consequence per variant allele using --pick_allele

Allele now included alongside frequency for 1000 Genomes (--af_1kg) and ESP (--af_esp) data

Not strictly script-related, but the VEP REST API has come out of beta!

New in version 75 (February 2014)

let VEP pick one consequence per variant for you using --pick; includes all transcript-specific data

gene symbol available in RefSeq cache and when using --refseq

Installation and use of RefSeq cache improved - remember to use --refseq with your RefSeq cache!

Added --cache_version option, primarily to aid Ensembl Genomes users.

New in version 74 (December 2013)

retrieve the humDiv PolyPhen prediction instead of humVar using --humdiv

source for gene symbol available with --symbol

New in version 73 (August 2013)

NHLBI-ESP frequencies available in cache (--af_esp)

Pubmed IDs for cited existing variants available in cache (--pubmed)

Convert your cache to use tabix - much faster when retrieving co-located existing variants!

The installer can now update the VEP to the latest version and install FASTA files

--hgnc replaced by --symbol for non-human compatibility

HGVS strings are now part URI-escaped to avoid "=" sign clashes

use --allele_number to identify input alleles by their order in the VCF ALT field

use --total_length to give the total length of cDNA, CDS and protein sequences

add data from VCF INFO fields when using custom annotations

New in version 72 (June 2013)

Speed and stability improvements when using forking

Filter VEP results using filter_vep.pl

New in version 71 (April 2013)

SIFT predictions now available for Chicken, Cow, Dog, Human, Mouse, Pig, Rat and Zebrafish

View summary statistics for VEP runs in [output]_summary.html

Generate HTML output using --html

Support for simple tab-delimited format for input of structural variant data

Cache now contains clinical significance statuses from dbSNP for human variants

NOTE: VEP version numbers have now (from release 71) changed to match Ensembl release numbers.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick_order
https://www.ensembl.org/Help/Glossary?id=492
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_tsl
http://www.sequenceontology.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_regulatory
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_biotype
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_assembly
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#assembly
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#assembly
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_uniprot
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#json
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_json
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gencode_basic
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_merged
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_all_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick_allele
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_esp
http://rest.ensembl.org/#Variation
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_symbol
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache_version
http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview#prediction
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_humdiv
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_symbol
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_esp
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pubmed
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#convert
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_symbol
http://en.wikipedia.org/wiki/Percent-encoding
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_allele_number
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_total_length
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#stats
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_html

New in version 2.8 (December 2012)

Easily filter out common human variants with --filter_common

1000 Genomes continental population frequencies now stored in cache files

New in version 2.7 (October 2012)

build VEP cache files offline from GTF and FASTA files

support for using FASTA files for sequence lookup in HGVS notations in offline/cache modes

New in version 2.6 (July 2012)

support for structural variant consequences

Sequence Ontology (SO) consequence terms now default

script runtime 3-4x faster when using forking

1000 Genomes global MAF available in cache files

improved memory usage

New in version 2.5 (May 2012)

SIFT and PolyPhen predictions now available for RefSeq transcripts

retrieve cell type-specific regulatory consequences

consequences can be retrieved based on a single individual's genotype in a VCF input file

find overlapping structural variants

Condel support removed from main script and moved to a plugin

New in version 2.4 (February 2012)

offline mode and new installer script make it easy to use the VEP without the usual dependencies

output columns configurable using the --fields flag

VCF output support expanded, can now carry all fields

output affected exon and intron numbers with --numbers

output overlapping protein domains using --domains

enhanced support for LRGs

plugins now work on variants called as intergenic

New in version 2.3 (December 2011)

add custom annotations from tabix-indexed files (BED, GFF, GTF, VCF, bigWig)

add new functionality to the VEP with user-written plugins

filter input on consequence type

New in version 2.2 (September 2011)

SIFT, PolyPhen and Condel predictions and regulatory features now accessible from the cache

support for calling consequences against RefSeq transcripts

variant identifiers (e.g. dbSNP rsIDs) and HGVS notations supported as input format

variants can now be filtered by frequency in HapMap and 1000 genomes populations

script can be used to convert files between formats (Ensembl/VCF/Pileup/HGVS to Ensembl/VCF/Pileup)

large amount of code moved to API modules to ensure consistency between web and script VEP

memory usage optimisations

VEP script moved to ensembl-tools repo

Added --canonical, --per_gene and --no_intergenic options

New in version 2.1 (June 2011)

ability to use local file cache in place of or alongside connecting to an Ensembl database

significant improvements to speed of script

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_filter_common
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#sv
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#forking
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fields
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_numbers
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_domains
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#filt
https://github.com/Ensembl/ensembl-tools/tree/release/114/scripts/variant_effect_predictor
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_canonical
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_per_gene
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_intergenic
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache

whole-genome mode now default (no disadvantage for smaller datasets)

improved status output with progress bars

regulatory region consequences now reinstated and improved

modification to output file - Transcript column is now Feature, and is followed by a Feature_type column

New in version 2.0 (April 2011)

support for SIFT, PolyPhen and Condel missense predictions in human

per-allele and compound consequence types

support for Sequence Ontology (SO) and NCBI consequence terms

modified output format

support for new output fields in Extra column

header section contains information on database and software versions

codon change shown in output

CDS position shown in output

option to output Ensembl protein identifiers

option to output HGVS nomenclature for variants

support for gzipped input files

enhanced configuration options, including the ability to read configuration from a file

verbose output now much more useful

whole-genome mode now more stable

finding existing co-located variations now ~5x faster

Requirements

VEP requires:

gcc, g++ and make

Perl version 5.10 or above recommended (tested on 5.10, 5.14, 5.18, 5.22, 5.26)

Perl packages:

Archive::Zip

DBD::mysql (version <=4.050)

DBI

See this guide for more information on how to install perl modules.
Additional libraries can be installed for extra features and enhancements but they are not required to run VEP in most of the use
cases.

VEP's INSTALL.pl script will install required components of Ensembl API for you, but VEP may also be used with any pre-existing API
installations you have, provided their versions match the version of VEP you are using.

VEP is available in the following platforms:

Linux (e.g., Ubuntu, Debian, Mint)

macOS

 Windows (requires a more involved installation process)

VEP is also available as Docker and Singularity images, allowing to skip the complex installation steps.

Installation

VEP's INSTALL.pl makes it easy to set up your environment for using the VEP. It will download and configure a minimal set of the
Ensembl API for use by the VEP, and can also download cache files, FASTA files and plugins.

Run the following, and follow any prompts as they appear:

https://metacpan.org/pod/Archive::Zip
https://metacpan.org/release/DVEEDEN/DBD-mysql-4.050/view/lib/DBD/mysql.pm
https://metacpan.org/pod/DBI
http://www.cpan.org/modules/INSTALL.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html

perl INSTALL.pl

Additional non-essential components and enhancements must be installed manually.

Software components installed

BioPerl

ensembl

ensembl-io

ensembl-variation

ensembl-funcgen

Bio::DB::HTS

If you already have the latest version of the API installed you do not need to run the installer, although it can be used to simply update
your API version (with post-release patches applied), and retrieve cache and FASTA files. The installer downloads the API within the VEP
directory and will not affect any other Ensembl API installations.

The script will also attempt to install a Perl::XS module, Bio::DB::HTS , for rapid access to bgzipped FASTA files. If this fails, you may
add the --NO_HTSLIB flag when running the installer; VEP will fall back to using Bio::DB::Fasta for this functionality (more details).

Running the installer

The installer is run on the command line as follows:

 perl INSTALL.pl [options]

Follow on-screen prompts and note warnings of any files which will be deleted/overwritten

You should not need to add any options, but configuration of the installer is possible with the flags below. Options can also be set by
exporting environment variables prefixed with VEP_ before running the installer (for instance, export VEP_NO_HTSLIB=1 and
export VEP_DIR_PLUGINS="/plugins").

Flag Alternate Description
--
ASSEMBLY

-y Assembly version to use when using --AUTO. Most species have only one assembly available on each
software release; currently this is only required for human on release 76 onwards.

--AUTO -a Run installer without prompts. Use the following options to specify parts to install:

a (API + Bio::DB::HTS/htslib)

l (Bio::DB::HTS/htslib only)

c (cache)

f (FASTA)

p (plugins) — Require the use of the --PLUGINS flag to list the plugin(s) to install.

e.g. for API and cache:

perl INSTALL.pl --AUTO ac

--
CACHE_VER
SION
[version]

 By default the installer will download the latest version of VEP caches and FASTA files (currently 114). You
can force the script to install a different version, but there is no guarantee that a version of the API will be
compatible with a different version of the cache.

https://github.com/bioperl/bioperl-live
https://github.com/Ensembl/ensembl
https://github.com/Ensembl/ensembl-io
https://github.com/Ensembl/ensembl-variation
https://github.com/Ensembl/ensembl-funcgen
https://github.com/Ensembl/Bio-DB-HTS
https://github.com/Ensembl/Bio-HTS
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#assembly

--
CACHEDIR
[dir]

-c By default the script will install the cache files in the ".vep" subdirectory in your home area. This option
configures where cache files are installed.

The --dir_cache flag must be passed when running the VEP if a non-default cache directory is given:

./vep --dir_cache [dir]

--DESTDIR
[dir]

-d By default the script will install the API modules in a subdirectory of the current directory named "Bio". Using
this option you can configure where the Bio directory is created. If something other than the default is used,
this directory must either be added to your PERL5LIB environment variable when running the VEP, or
included using perl's -I flag:

perl -I [dir] vep

--
NO_HTSLIB

-l Don't attempt to install Bio::DB::HTS/htslib

--NO_TEST Don't run API tests - useful if you know a harmless failure will prevent continuation of the installer

--
NO_UPDATE

-n By default the script will check for new versions or updates of the VEP. Using this option will skip this check.

--PLUGINS -g Comma-separated list of plugins to install when using --AUTO. To install all available plugins, use --
PLUGINS all.

List the available plugins:
perl INSTALL.pl -a p --PLUGINS list
Download/install all the available plugins:
perl INSTALL.pl -a p --PLUGINS all
Download/install a defined list of plugins, e.g.:
perl INSTALL.pl -a p --PLUGINS dbNSFP,CADD,G2P

--
PLUGINSDI
R [dir]

-r By default the script will install the plugins files in the "Plugins" subdirectory of the --CACHEDIR directory.
This option configures where the plugins files are installed.

The --dir_plugins flag must be passed when running the VEP if a non-default plugins directory is given:

./vep --dir_plugins [dir]

--
PREFER_BI
N

-p Use this if the installer fails with out of memory errors.

--SPECIES -s Comma-separated list of species to install when using --AUTO. To install the RefSeq cache, add "_refseq" to
the species name, e.g. "homo_sapiens_refseq", or "_merged" to install the merged Ensembl/RefSeq cache.
Remember to use --refseq or --merged when running the VEP with the relevant cache!

Use all to install data for all available species.

--QUIET -q Don't write any status output when using --AUTO.

Additional components

INSTALL.pl will set up the minimum requirements for VEP. Some features and enhancements, however, require the installation of
additional components. Most are perl modules that are easily installed using cpanm; see this guide for more information on how to
install perl modules.

Typically, you will use cpanm to install modules locally in your home directories; this shows how to set up a path for perl modules and
install one there:

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_dir_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_dir_plugins
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_merged
http://www.cpan.org/modules/INSTALL.html

mkdir -p $HOME/cpanm
export PERL5LIB=$PERL5LIB:$HOME/cpanm/lib/perl5
cpanm -l $HOME/cpanm Set::IntervalTree

To make the change to PERL5LIB permanent, it is recommended to add the export line to your $HOME/.bashrc or
$HOME/.profile.

Additional features

JSON - required to produce JSON format output

Set::IntervalTree - used to find overlaps between entities in coordinate space. Required to use --nearest

Bio::DB::BigFile - required to use bigWig format custom annotation files. See Bio::DB::BigFile instructions.

Speed enhancements - these modules can improve VEP runtime

PerlIO::gzip - marginal gains in compressed file parsing as used by VEP cache

ensembl-xs - provides pre-compiled replacements for frequently used routines in VEP. Requires manual installation, see
README for details

Bio::DB::BigFile

In order for VEP to be able to access bigWig format custom annotation files, the Bio::DB::BigFile perl module is required. Installation
involves downloading and compiling the kent source tree . The current version of the kent source tree does not work correctly with
Bio::DB::BigFile, so it is necessary to install an archive version known to work (v335).

1. Download and unpack the kent source tree

wget https://github.com/ucscGenomeBrowser/kent/archive/v335_base.tar.gz
tar xzf v335_base.tar.gz

2. Set up some environment variables; these are required only temporarily for this installation process

export KENT_SRC=$PWD/kent-335_base/src
export MACHTYPE=$(uname -m)
export CFLAGS="-fPIC"
export MYSQLINC=`mysql_config --include | sed -e 's/^-I//g'`
export MYSQLLIBS=`mysql_config --libs`

3. Modify kent build parameters

cd $KENT_SRC/lib
echo 'CFLAGS="-fPIC"' > ../inc/localEnvironment.mk

4. Build kent source

make clean && make
cd ../jkOwnLib
make clean && make

If either of these steps fail, you may have some missing dependencies. Known common missing dependencies are libpng and libssl;
these may be installed, for example, with apt-get on Ubuntu. If you do not have sudo access you may have to ask your sysadmin
to install any missing dependencies.

sudo apt-get install libpng-dev libssl-dev

On macOS you may use brew ; the openssl libraries also need to be symbolically linked to a different path:

brew install libpng openssl
cd /usr/local/include
ln -s ../opt/openssl/include/openssl .
cd -

5. On some systems (e.g. macOS), a compiled file is placed in a path that Bio::DB::BigFile cannot find. You can correct this with:

http://search.cpan.org/dist/JSON/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_json
http://search.cpan.org/~benbooth/Set-IntervalTree/lib/Set/IntervalTree.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_nearest
http://search.cpan.org/~lds/Bio-BigFile-1.07/lib/Bio/DB/BigFile.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
http://search.cpan.org/~nwclark/PerlIO-gzip-0.19/gzip.pm
https://github.com/Ensembl/ensembl-xs
https://github.com/Ensembl/ensembl-xs
https://github.com/ucscGenomeBrowser/kent
https://brew.sh/

ln -s $KENT_SRC/lib/x86_64/* $KENT_SRC/lib/

6. We'll now use cpanm to install the perl module for Bio::DB::BigFile itself. See above for guidance on this. In this example we're
going to install the module to a path within your home directory. In order to do this we must modify the paths that perl looks in to find
modules by adding to the PERL5LIB environment module. To make this change permanent you must add the export line to your
$HOME/.bashrc or $HOME/.profile.

mkdir -p $HOME/cpanm
export PERL5LIB=$PERL5LIB:$HOME/cpanm/lib/perl5
cpanm -l $HOME/cpanm Bio::DB::BigFile

If you are prompted for the path to the kent source tree, that means something didn't go right in the compilation above. Double
check that $KENT_SRC/lib/jkweb.a exists and is not found instead at e.g. $KENT_SRC/lib/x86_64/jkweb.a. You may copy
or link the file (and the other files in that directory) to the former path.

ln -s $KENT_SRC/lib/x86_64/* $KENT_SRC/lib/

7. You should now be able to successfully run the appropriate test in the VEP package:

perl -Imodules t/AnnotationSource_File_BigWig.t

Using VEP in macOS

Installing VEP on macOS is slightly trickier than other Linux-based systems, and will require additional dependancies.
These instructions will guide you through the setup of Perlbrew, Homebrew, MySQL and other dependancies that will allow for a clean
installation of VEP on your macOS system.

These instructions have been tested on macOS High Sierra (10.13) and macOS Sierra (10.12).
Older versions may require additional tweaks, however we shall endeavouXcoder to keep these instructions up to date for future
versions of MacOS.

Prerequisite Setup

List of prerequisites: Xcode, GCC, Perlbrew, Cpanm, Homebrew, mysql, DBI, DBD::mysql (version <=4.050)

Xcode and GCC

VEP requires Xcode and GCC for installation purposes. Fortunately, recent versions of macOS will look for (and attempt to install if
required) both of these when you run the following command:

gcc -v

Perlbrew

We recommend using Perlbrew to install a new version of Perl on your mac, to prevent messing with the vendor perl too much. This can
be done with the following command:

curl -L http://install.perlbrew.pl | bash

echo 'source $HOME/perl5/perlbrew/etc/bashrc' >> ~/.bash_profile

At this point, PLEASE RESTART YOUR TERMINAL WINDOW to allow for the perlbrew changes to take effect.

We recommend installing Perl version 5.26.2 to run VEP, and installing cpanm to handle the installation of perl modules.
These steps can be completed with the commands:

perlbrew install -j 5 --as 5.26.2 --thread --64all -Duseshrplib perl-5.26.2 --notest
perlbrew switch 5.26.2
perlbrew install-cpanm

Homebrew

This package management system for macOS would make the installation of the next prerequisite (i.e. xs) easier.

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

xz

VEP requires the installation of xz, a data-compression utility. The easiest way to install the xz package is through homebrew:

brew install xz

MySQL

In order to connect to the Ensembl databases, a collection of MySQL related dependancies are required. Fortunately, these can be
installed neatly with Homebrew and Cpanm:

brew install mysql
cpanm DBI
cpanm DBD::mysql@4.050

Installing BioPerl

On some versions of macOS, the VEP installer fails to cleanly install BioPerl, so a manual install will prevent issues:

curl -O https://cpan.metacpan.org/authors/id/C/CJ/CJFIELDS/BioPerl-1.6.924.tar.gz
tar zxvf BioPerl-1.6.924.tar.gz
echo 'export PERL5LIB=${PERL5LIB}:##PATH_TO##/bioperl-1.6.924' >> ~/.bash_profile

where ##PATH_TO##/bioperl-1.6.924 refers to the location of the newly unzipped BioPerl directory.

Final Dependancies

Installing the following Perl modules with cpanm will allow for full VEP functionality:

cpanm Test::Differences Test::Exception Test::Perl::Critic Archive::Zip PadWalker Error
Devel::Cycle Role::Tiny::With Module::Build LWP List::MoreUtils

export DYLD_LIBRARY_PATH=/usr/local/mysql/lib/:$DYLD_LIBRARY_PATH

Installing VEP

And that should be that! You should now be able to install VEP using the installer:

git clone https://github.com/ensembl/ensembl-vep
cd ensembl-vep
perl INSTALL.pl --NO_TEST

Using VEP in Windows

VEP was developed as a command-line tool, and as a Perl script its natural environment is a Linux system. However, there are several
ways you can use VEP on a Windows machine.

You may also consider using VEP's web or REST interfaces.

Virtual machines

Using a virtual machine you can run a virtual Linux system in a window on your machine. There are two ways to do this:

1. Use the Ensembl virtual machine image

2. Use Docker

Perl

https://www.ensembl.org/info/data/virtual_machine.html

If Perl is installed on Windows, VEP can be setup. However this may require installation of dependent modules. We recommend using
Docker to run VEP on Windows.

1. Check Perl is installed

2. Download and unpack the zip of the ensembl-vep package

3. Open a Command Prompt (search for Command Prompt in the Start Menu)

4. Navigate to the directory where you unpacked the VEP package, e.g.

cd Downloads/ensembl-vep-release-114

5. Run INSTALL.pl with --NO_HTSLIB and --NO_TEST; you will see some warnings about the "which" command not being available
(these will also appear when running VEP and can be ignored).

perl INSTALL.pl --NO_HTSLIB --NO_TEST

Docker

Docker allows running applications in virtualised containers. The VEP Docker image is available from DockerHub:

After installing Docker , download the VEP Docker image:

docker pull ensemblorg/ensembl-vep

To download cache files and other data with VEP Docker, we recommend mounting a directory from your local (host) machine to folder
/data from the Docker image. For instance:

mkdir $HOME/vep_data
docker run -t -i -v $HOME/vep_data:/data ensemblorg/ensembl-vep

In the example above, data in $HOME/vep_data will be accessible by both the local machine and VEP Docker. The Ensembl VEP API,
plugins and their dependencies (e.g. Perl APIs, Bio::DB::HTS, htslib, ...) are already installed in the image.

Cache and FASTA files installation

You can run the INSTALL.pl script to install the cache and FASTA files:

docker run -t -i -v $HOME/vep_data:/data ensemblorg/ensembl-vep INSTALL.pl

You will be asked to install cache data. Type the comma-separated numbers for the species/assembly of interest and press enter.
Your data will download and unpack; this may take a while.

If you wish to retrieve HGVS annotations, please download the FASTA files for your species. To do this, at the next prompt type 0
and press enter.

The above process may also be performed in one command; for example, to set up the cache and corresponding FASTA for human
GRCh38:

docker run -t -i -v $HOME/vep_data:/data ensemblorg/ensembl-vep INSTALL.pl -a cf -s homo_sapiens -
y GRCh38

The installer downloads VEP data to the mounted directory (e.g., $HOME/vep_data). The downloaded data will be automatically
detected as long as its folder is mounted when running VEP:

docker run -v $HOME/vep_data:/data ensemblorg/ensembl-vep vep -i examples/homo_sapiens_GRCh38.vcf
--cache

Running VEP with data from local folder

Here is an example on running VEP with data from folder $HOME/vep_data in the local machine (provided that the cache has been
downloaded to that folder):

https://github.com/Ensembl/ensembl-vep/archive/release/114.zip
https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/engine/tutorials/dockervolumes/

docker run -v $HOME/vep_data:/data ensemblorg/ensembl-vep \
 vep --cache --offline --format vcf --vcf --force_overwrite \
 --input_file input/my_input.vcf \
 --output_file output/my_output.vcf \
 --custom file=custom/my_extra_data.bed,short_name=BED_DATA,format=bed,type=exact,coords=1 \
 --plugin NMD

Please avoid using absolute paths to data as the paths inside the container differ from your local machine.

Update from a previous version

1. Update your Docker container

docker pull ensemblorg/ensembl-vep

2. Update your cache

Install the new cache through the VEP INSTALL.pl script (see "Cache installation" section
above)
docker run -t -i -v $HOME/vep_data:/data ensemblorg/ensembl-vep INSTALL.pl -a c

Or install the cache manually
cd $HOME/vep_data
curl -O https://ftp.ensembl.org/pub/release-
114/variation/vep/homo_sapiens_vep_114_GRCh38.tar.gz
tar xzf homo_sapiens_vep_114_GRCh38.tar.gz

Singularity

Due to root requirements for the Docker daemon, using the Docker container for VEP is not always possible to HPC users. Singularity,
an alternative containerisation tool, does not assume that you have a system where you are the root user. This has led to increased
popularity in HPC contexts due to increased access rights flexibility.

After installing Singularity , VEP may be used with Singularity based on the VEP Docker image from DockerHub:

singularity pull --name vep.sif docker://ensemblorg/ensembl-vep

The following is a brief example showing how to use a directory on your local (host) machine to store cache data for VEP.

mkdir $HOME/vep_data
singularity exec vep.sif vep --dir $HOME/vep_data --help

The Ensembl VEP API, plugins and their dependencies (e.g. Perl APIs, Bio::DB::HTS, htslib, ...) are already installed in the image.

Cache and FASTA files installation

You can run the INSTALL.pl script to install the Cache data and FASTA files. For example, to set up the cache and corresponding FASTA
for human GRCh38 in your local folder $HOME/vep_data:

singularity exec vep.sif INSTALL.pl -c $HOME/vep_data -a cf -s homo_sapiens -y GRCh38

The installer downloads data to the specified directory (e.g., $HOME/vep_data). When running VEP via Singularity, point to this
directory using --dir:

singularity exec vep.sif vep --dir $HOME/vep_data -i examples/homo_sapiens_GRCh38.vcf --cache

Running VEP with data from local folder

Here is an example on running VEP with data from folder $HOME/vep_data in the local machine (provided that the cache has been
downloaded to that folder):

https://hub.docker.com/r/ensemblorg/ensembl-vep/
https://sylabs.io/singularity/

singularity exec vep.sif \
 vep --dir $HOME/vep_data \
 --cache --offline --format vcf --vcf --force_overwrite \
 --input_file input/my_input.vcf \
 --output_file output/my_output.vcf \
 --custom file=custom/my_extra_data.bed,short_name=BED_DATA,format=bed,type=exact,coords=1 \
 --plugin NMD

Update from a previous version

1. Update your docker container

singularity pull --name vep.sif docker://ensemblorg/ensembl-vep

2. Update your cache

Install the new cache through the VEP INSTALL.pl script (see "Cache installation" section
above)
singularity exec vep.sif INSTALL.pl -c $HOME/vep_data -a c

Or install the cache manually
cd $HOME/vep_data
curl -O https://ftp.ensembl.org/pub/release-
114/variation/vep/homo_sapiens_vep_114_GRCh38.tar.gz
tar xzf homo_sapiens_vep_114_GRCh38.tar.gz

Nextflow

We offer a Nextflow VEP pipeline that aims to run VEP using simple parallelisation. The pipeline is deployable on an individual Linux
machine or on computing clusters running LSF, SLURM or other workload managers.

The process can be summarised briefly by the following steps:

Splitting the input data into multiple files using a given number of bins

Running VEP on the split files in parallel

Merging VEP outputs into a single file

To run the pipeline in a system with Nexflow installed, you will need to prepare a vep.ini config file. Here are some examples
commands to run the Nextflow VEP pipeline:

Run Nextflow VEP using local VEP installation
NB: Nextflow automatically downloads the GitHub repository
nextflow run Ensembl/ensembl-vep -r main \
 --input input.vcf \
 --vep_config vep.ini

Run latest VEP version using Docker
nextflow run Ensembl/ensembl-vep -r main \
 -profile docker \
 --input input.vcf \
 --vep_config vep.ini

Run VEP 114.0 using Docker
nextflow run Ensembl/ensembl-vep -r main \
 -profile docker \
 --input input.vcf \
 --vep_config vep.ini \
 --vep_version 114.0

Run VEP 114.0 using SLURM and Singularity
nextflow run Ensembl/ensembl-vep -r main \
 -profile slurm,singularity \
 --input input.vcf \

https://github.com/Ensembl/ensembl-vep/tree/release/114/nextflow
https://nextflow.io/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_config
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_config

 --vep_config vep.ini \
 --vep_version 114.0

For a full list of supported profiles, as well as more instructions on setting up and running the pipeline, please refer to the Nextflow VEP
instructions .

https://github.com/Ensembl/ensembl-vep/tree/release/114/nextflow
https://github.com/Ensembl/ensembl-vep/tree/release/114/nextflow

Variant Effect Predictor Data formats

Input

Both the web and script version of VEP can use the same input formats. Formats can be auto-detected by the VEP script, but must be
manually selected when using the web interface.

VEP can use different input formats:

Format Variant example Structural variant example

Default VEP input 1 881907 881906 -/C + 1 160283 471362 DUP +

VCF 1 65568 . A C . . . 1 7936271 . N N[12:58877476[. . SVTYPE=BND

HGVS identifiers ENST00000618231.3:c.9G>C ✗ Not supported

Variant identifiers rs699 nsv1000164

Genomic SPDI notation NC_000016.10:68684738:G:A ✗ Not supported

REST-style regions 14:19584687-19584687:-1/T 21:25587759-25587769/DEL

Default VEP input

The default format is a simple whitespace-separated format (columns may be separated by space or tab characters), containing five
required columns plus an optional identifier column:

1. chromosome - just the name or number, with no 'chr' prefix

2. start

3. end

4. allele - pair of alleles separated by a '/', with the reference allele first (or structural variant type)

5. strand - defined as + (forward) or - (reverse). The strand will only be used for VEP to know which alleles to use.

6. identifier - this identifier will be used in VEP's output. If not provided, VEP will construct an identifier from the given coordinates and
alleles.

1 881907 881906 -/C +
2 946507 946507 G/C +
5 140532 140532 T/C +
8 150029 150029 A/T + var2
12 1017956 1017956 T/A +
14 19584687 19584687 C/T -
19 66520 66520 G/A + var1

An insertion (of any size) is indicated by start coordinate = end coordinate + 1. For example, an insertion of 'C' between nucleotides
12600 and 12601 on the forward strand of chromosome 8 is indicated as follows:

8 12601 12600 -/C +

A deletion is indicated by the exact nucleotide coordinates. For example, a three base pair deletion of nucleotides 12600, 12601, and
12602 of the reverse strand of chromosome 8 will be:

8 12600 12602 CGT/- -

Structural variants are also supported by indicating a structural variant type instead of the allele:

1 20000 30000 CN4 + cnv4
1 160283 471362 DUP + dup
1 1385015 1387562 DEL + del1

12 1017956 1017956 INV + inv
21 25587759 25587769 CN0 + del2

VCF

VEP also supports using VCF (Variant Call Format) version 4.0 . This is a common format used by the 1000 genomes project, and can
be produced as an output format by many variant calling tools:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT
1 65568 . A C
1 230710048 rs699 A G
2 265023 . C T
3 319780 . GA G
20 3 . C CAAG,CAAGAAG . PASS . .
21 43762120 rs1300 T A,C,G

Structural variants are also supported depending on structural variant type.

Users using VCF should note a peculiarity in the difference between how Ensembl and VCF describe unbalanced variants. For any
unbalanced variant (i.e. insertion, deletion or unbalanced substitution), the VCF specification requires that the base immediately before
the variant should be included in both the reference and variant alleles. This also affects the reported position i.e. the reported position
will be one base before the actual site of the variant.

In order to parse this correctly, VEP needs to convert such variants into Ensembl-type coordinates, and it does this by removing the
additional base and adjusting the coordinates accordingly. This means that if an identifier is not supplied for a variant (in the 3rd column
of the VCF), then the identifier constructed and the position reported in VEP's output file will differ from the input.

This problem can be overcome with the following:

1. ensuring each variant has a unique identifier specified in the 3rd column of the VCF

2. using VCF format as output (--vcf) - this preserves the formatting of your input coordinates and alleles

3. using --minimal and --allele_number (see Complex VCF entries).

The following examples illustrate how VCF describes a variant and how it is handled internally by VEP. Consider the following aligned
sequences (for the purposes of discussion on chromosome 20):

Ref: a t C g a // C is the reference base
1 : a t G g a // C base is a G in individual 1
2 : a t - g a // C base is deleted w.r.t. the reference in individual 2
3 : a t CAg a // A base is inserted w.r.t. the reference sequence in individual 3

Individual 1

The first individual shows a simple balanced substitution of G for C at base 3. This is described in a compatible manner in VCF and
Ensembl styles. Firstly, in VCF:

20 3 . C G . PASS .

And in Ensembl format:

 20 3 3 C/G +

Individual 2

The second individual has the 3rd base deleted relative to the reference. In VCF, both the reference and variant allele columns must
include the preceding base (T) and the reported position is that of the preceding base:

20 2 . TC T . PASS .

In Ensembl format, the preceding base is not included, and the start/end coordinates represent the region of the sequence deleted. A "-"
character is used to indicate that the base is deleted in the variant sequence:

http://www.1000genomes.org/wiki/Analysis/vcf4.0
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_vcf
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_minimal
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_allele_number

20 3 3 C/- +

The upshot of this is that while in the VCF input file the position of the variant is reported as 2, in the output file from VEP the position will
be reported as 3. If no identifier is provided in the third column of the VCF, then the constructed identifier will be:

20_3_C/-

Individual 3

The third individual has an "A" inserted between the 3rd and 4th bases of the sequence relative to the reference. In VCF, as for the
deletion, the base before the insertion is included in both the reference and variant allele columns, and the reported position is that of the
preceding base:

20 3 . C CA . PASS .

In Ensembl format, again the preceding base is not included, and the start/end positions are "swapped" to indicate that this is an
insertion. Similarly to a deletion, a "-" is used to indicate no sequence in the reference:

 20 4 3 -/A +

Again, the output will appear different, and the constructed identifier may not be what is expected:

20_3_-/A

Using VCF format output, or adding unique identifiers to the input (in the third VCF column), can mitigate this issue.

Complex VCF entries

For VCF entries with multiple alternate alleles, VEP will only trim the leading base from alleles if all REF and ALT alleles start with the
same base:

20 3 . C CAAG,CAAGAAG . PASS .

This will be considered internally by VEP as equivalent to:

20 4 3 -/AAG/AAGAAG +

Now consider the case where a single VCF line contains a representation of both a SNV and an insertion:

20 3 . C CAAAG,G . PASS .

Here the input alleles will remain unchanged, and VEP will consider the first REF/ALT pair as a substitution of C for CAAG, and the
second as a C/G SNV:

20 3 3 C/CAAG/G +

To modify this behaviour, VEP script users may use --minimal. This flag forces VEP to consider each REF/ALT pair independently,
trimming identical leading and trailing bases from each as appropriate. Since this can lead to confusing output regarding coordinates etc,
it is not the default behaviour. It is recommended to use the --allele_number flag to track the correspondence between alleles as input
and how they appear in the output.

HGVS identifiers

See https://varnomen.hgvs.org for details. These must be relative to genomic or Ensembl transcript coordinates.

It also is possible to use RefSeq transcripts in both the web interface and the VEP script (see script documentation): this works for
RefSeq transcripts that align to the genome correctly.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_minimal
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_allele_number
http://varnomen.hgvs.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#hgvs

Examples:

ENST00000618231.3:c.9G>C
ENST00000471631.1:c.28_33delTCGCGG
ENST00000285667.3:c.1047_1048insC
5:g.140532G>C

Examples using RefSeq identifiers (using --refseq in the VEP script, or select the otherfeatures transcript database on the web interface
and input type of HGVS):

NM_153681.2:c.7C>T
NM_005239.6:c.190G>A
NM_001025204.2:c.336G>A

HGVS protein notations may also be used, provided that they unambiguously map to a single genomic change. Due to redundancy in the
amino acid code, it is not always possible to work out the corresponding genomic sequence change for a given protein sequence
change. The following example is for a permissable protein notation in dog (Canis familiaris):

ENSCAFP00000040171.1:p.Thr92Asn

Ambiguous gene-based descriptions

It is possible to use ambiguous descriptions listing only gene symbol or UniProt accession and protein change (e.g.
PHF21B:p.Tyr124Cys, P01019:p.Ala268Val), as seen in the literature, though this is not recommended as it can produce multiple
different variants at genomic level. The transcripts for a gene are considered in the following order:

1. MANE Select transcript status

2. MANE Plus Clinical transcript status

3. canonical status of transcript

4. APPRIS isoform annotation

5. transcript support level

6. biotype of transcript ("protein_coding" preferred)

7. CCDS status of transcript

8. consequence rank according to this table

9. translated, transcript or feature length (longer preferred)

and the first compatible transcript is used to map variants to the genome for annotation.

Variant identifiers

These should be dbSNP rsIDs (such as rs699), or any synonym for a variant present in the Ensembl Variation database. Structural
variant identifiers (like nsv1000164 and esv1850194) are also supported.

See here for a list of identifier sources in Ensembl.

Examples:

rs1156485833
rs1258750482
rs867704559
esv1815690
nsv1000164

Genomic SPDI notation

VEP can also support genomic SPDI notation which uses four fields delimited by colons S:P:D:I (Sequence:Position:Deletion:Insertion).
In SPDI notation, the position refers to the base before the variant, not the base of the variant itsef.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/genome/genebuild/mane.html
https://www.ensembl.org/info/genome/genebuild/mane.html
https://www.ensembl.org/Help/Glossary?id=521
https://www.ensembl.org/Help/Glossary?id=492
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org/info/genome/variation/species/sources_documentation.html

See here for details.

Examples:

NC_000016.10:68684738:G:A
NC_000017.11:43092199:GCTTTT:
NC_000013.11:32315789::C
NC_000016.10:68644746:AA:GTA
16:68684738:2:AC

REST-style regions

VEP's region REST endoint requires variants are described as [chr]:[start]-[end]:[strand]/[allele].

This follows the same conventions as the default input format, with the key difference being that this format does not require the
reference (REF) allele to be included; VEP will look up the reference allele using either a provided FASTA file (preferred) or Ensembl
core database. Strand is optional and defaults to 1 (forward strand).

SNP
5:140532-140532:1/C

SNP (reverse strand)
14:19584687-19584687:-1/T

insertion
1:881907-881906:1/C

5bp deletion
2:946507-946511:1/-

Structural variants are also supported by indicating a structural variant type in the place of the [allele]:

structural variant: deletion
21:25587759-25587769/DEL

structural variant: inversion
21:25587759-25587769/INV

Structural variant types

VEP can also call consequences on structural variants using the following input formats:

Default VEP input

REST-style regions

Variant identifiers

VCF

To recognise a variant as a structural variant, the allele string (or SVTYPE in the INFO column of the VCF format) must be set to one of
the currently supported values:

INS - insertion

INS:ME - insertion of mobile element

INS:ME:ALU - insertion of ALU element

INS:ME:HERV - insertion of HERV element

INS:ME:LINE1 - insertion of LINE1 element

INS:ME:SVA - insertion of SVA element

https://www.ncbi.nlm.nih.gov/variation/notation/

DEL - deletion

DEL:ME - deletion of mobile element

DEL:ME:ALU - deletion of ALU element

DEL:ME:HERV - deletion of HERV element

DEL:ME:LINE1 - deletion of LINE1 element

DEL:ME:SVA - deletion of SVA element

DUP - duplication

DUP:TANDEM - tandem duplication

TDUP - tandem duplication

INV - inversion

CNV - copy number variation

The copy number value can be specified like so:

CN0

CN=4

CN3,CN4,CN6

CN=0,CN=2,CN=4

CNV:TR - tandem repeats

Requires INFO fields describing the tandem repeat, such as RUS and RN – check VCF 4.4 specification, section 5.7

Currently, the CIRUC and CIRB INFO fields are ignored when calculating alternative alleles in tandem repeats

BND - chromosome breakpoints

Breakpoint variants are composed by one or more breakends

In VCF, breakend replacements are inserted into the ALT column and need to meet the HTS specifications , such as
TG[12:58877476[

Single breakends can be specified in ALT, such as T. and .G

Multiple, comma-separated alternative breakends can be specified in ALT, such as A[22:22893780[,A[X:10932343[

More information on how VEP processes structural variants can be found here.

Examples of structural variants encoded in VCF format

#CHROM POS ID REF ALT QUAL FILTER INFO
1 160283 dup . <DUP> . . SVTYPE=DUP;END=471362
1 1385015 del . . . SVTYPE=DEL;END=1387562
1 7936271 bnd N N[12:58877476[. . SVTYPE=BND

See the VCF definition document for more detail on how to describe structural variants in VCF format.

Output

VEP can return the results in different formats:

Default VEP output

Tab-delimited output

VCF

JSON output

Along with the results VEP computes and returns some statistics.

https://samtools.github.io/hts-specs/VCFv4.4.pdf
http://samtools.github.io/hts-specs/
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#StructVar
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/VCF%20%28Variant%20Call%20Format%29%20version%204.0/encoding-structural-variants

Default VEP output

The default output format ("VEP" format when downloading from the web interface) is a 14 column tab-delimited file. Empty values are
denoted by '-'. The output columns are:

1. Uploaded variation - as chromosome_start_alleles

2. Location - in standard coordinate format (chr:start or chr:start-end)

3. Allele - the variant allele used to calculate the consequence

4. Gene - Ensembl stable ID of affected gene

5. Feature - Ensembl stable ID of feature

6. Feature type - type of feature. Currently one of Transcript, RegulatoryFeature, MotifFeature.

7. Consequence - consequence type of this variant

8. Position in cDNA - relative position of base pair in cDNA sequence

9. Position in CDS - relative position of base pair in coding sequence

10. Position in protein - relative position of amino acid in protein

11. Amino acid change - only given if the variant affects the protein-coding sequence

12. Codon change - the alternative codons with the variant base in upper case

13. Co-located variation - identifier of any existing variants. Switch on with --check_existing

14. Extra - this column contains extra information as key=value pairs separated by ";", see below.

Other output fields:

REF_ALLELE - the reference allele (after minimisation)

UPLOADED_ALLELE - the uploaded allele string (before minimisation)

IMPACT - the impact modifier for the consequence type

VARIANT_CLASS - Sequence Ontology variant class

SYMBOL - the gene symbol

SYMBOL_SOURCE - the source of the gene symbol

STRAND - the DNA strand (1 or -1) on which the transcript/feature lies

ENSP - the Ensembl protein identifier of the affected transcript

FLAGS - transcript quality flags:

cds_start_NF: CDS 5' incomplete

cds_end_NF: CDS 3' incomplete

SWISSPROT - Best match UniProtKB/Swiss-Prot accession of protein product

TREMBL - Best match UniProtKB/TrEMBL accession of protein product

UNIPARC - Best match UniParc accession of protein product

HGVSc - the HGVS coding sequence name

HGVSp - the HGVS protein sequence name

HGVSg - the HGVS genomic sequence name

HGVS_OFFSET - Indicates by how many bases the HGVS notations for this variant have been shifted. Value must be greater than
0.

NEAREST - Identifier(s) of nearest transcription start site

SIFT - the SIFT prediction and/or score, with both given as prediction(score)

PolyPhen - the PolyPhen prediction and/or score

MOTIF_NAME - the source and identifier of a transcription factor binding profile aligned at this position

MOTIF_POS - The relative position of the variation in the aligned TFBP

HIGH_INF_POS - a flag indicating if the variant falls in a high information position of a transcription factor binding profile (TFBP)

MOTIF_SCORE_CHANGE - The difference in motif score of the reference and variant sequences for the TFBP

CELL_TYPE - List of cell types and classifications for regulatory feature

https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#colocated
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_existing
https://www.ensembl.org/info/genome/variation/prediction/classification.html#classes
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_hgvs

CANONICAL - a flag indicating if the transcript is denoted as the canonical transcript for this gene

CCDS - the CCDS identifer for this transcript, where applicable

INTRON - the intron number (out of total number)

EXON - the exon number (out of total number)

DOMAINS - the source and identifer of any overlapping protein domains

DISTANCE - Shortest distance from variant to transcript. Note: DISTANCE of 0 is possible for insertions happening just before or
after a transcript because variant coordinates are considered to be the flanking bases where insertion happens.

IND - individual name

ZYG - zygosity of individual genotype at this locus

SV - IDs of overlapping structural variants

FREQS - Frequencies of overlapping variants used in filtering

AF - Frequency of existing variant in 1000 Genomes

AFR_AF - Frequency of existing variant in 1000 Genomes combined African population

AMR_AF - Frequency of existing variant in 1000 Genomes combined American population

ASN_AF - Frequency of existing variant in 1000 Genomes combined Asian population

EUR_AF - Frequency of existing variant in 1000 Genomes combined European population

EAS_AF - Frequency of existing variant in 1000 Genomes combined East Asian population

SAS_AF - Frequency of existing variant in 1000 Genomes combined South Asian population

gnomADe_AF - Frequency of existing variant in gnomAD exomes combined population

gnomADe_AFR_AF - Frequency of existing variant in gnomAD exomes African/American population

gnomADe_AMR_AF - Frequency of existing variant in gnomAD exomes American population

gnomADe_ASJ_AF - Frequency of existing variant in gnomAD exomes Ashkenazi Jewish population

gnomADe_EAS_AF - Frequency of existing variant in gnomAD exomes East Asian population

gnomADe_FIN_AF - Frequency of existing variant in gnomAD exomes Finnish population

gnomADg_MID_AF - Frequency of existing variant in gnomAD exomes Mid-eastern population

gnomADe_NFE_AF - Frequency of existing variant in gnomAD exomes Non-Finnish European population

gnomADe_REMAINING_AF - Frequency of existing variant in gnomAD exomes combined remaining combined populations

gnomADe_SAS_AF - Frequency of existing variant in gnomAD exomes South Asian population

gnomADg_AF - Frequency of existing variant in gnomAD genomes combined population

gnomADg_AFR_AF - Frequency of existing variant in gnomAD genomes African/American population

gnomADg_AMI_AF - Frequency of existing variant in gnomAD genomes Amish population

gnomADg_AMR_AF - Frequency of existing variant in gnomAD genomes American population

gnomADg_ASJ_AF - Frequency of existing variant in gnomAD genomes Ashkenazi Jewish population

gnomADg_EAS_AF - Frequency of existing variant in gnomAD genomes East Asian population

gnomADg_FIN_AF - Frequency of existing variant in gnomAD genomes Finnish population

gnomADg_MID_AF - Frequency of existing variant in gnomAD genomes Mid-eastern population

gnomADg_NFE_AF - Frequency of existing variant in gnomAD genomes Non-Finnish European population

gnomADg_REMAINING_AF - Frequency of existing variant in gnomAD genomes combined remaining combined populations

gnomADg_SAS_AF - Frequency of existing variant in gnomAD genomes South Asian population

MAX_AF - Maximum observed allele frequency in 1000 Genomes, ESP and gnomAD

MAX_AF_POPS - Populations in which maximum allele frequency was observed

CLIN_SIG - ClinVar clinical significance of the dbSNP variant

BIOTYPE - Biotype of transcript or regulatory feature

APPRIS - Annotates alternatively spliced transcripts as primary or alternate based on a range of computational methods. NB: not
available for GRCh37

TSL - Transcript support level. NB: not available for GRCh37

GENCODE_PRIMARY - Reports if transcript belongs to GENCODE primary subset

PUBMED - Pubmed ID(s) of publications that cite existing variant

SOMATIC - Somatic status of existing variant(s); multiple values correspond to multiple values in the Existing_variation field

PHENO - Indicates if existing variant is associated with a phenotype, disease or trait; multiple values correspond to multiple values
in the Existing_variation field

GENE_PHENO - Indicates if overlapped gene is associated with a phenotype, disease or trait

ALLELE_NUM - Allele number from input; 0 is reference, 1 is first alternate etc

MINIMISED - Alleles in this variant have been converted to minimal representation before consequence calculation

PICK - indicates if this block of consequence data was picked by --flag_pick or --flag_pick_allele

BAM_EDIT - Indicates success or failure of edit using BAM file

GIVEN_REF - Reference allele from input

USED_REF - Reference allele as used to get consequences

REFSEQ_MATCH - the RefSeq transcript match status; contains a number of flags indicating whether this RefSeq transcript
matches the underlying reference sequence and/or an Ensembl transcript (more information).

rseq_3p_mismatch: signifies a mismatch between the RefSeq transcript and the underlying primary genome assembly
sequence. Specifically, there is a mismatch in the 3' UTR of the RefSeq model with respect to the primary genome assembly
(e.g. GRCh37/GRCh38).

rseq_5p_mismatch: signifies a mismatch between the RefSeq transcript and the underlying primary genome assembly
sequence. Specifically, there is a mismatch in the 5' UTR of the RefSeq model with respect to the primary genome assembly.

rseq_cds_mismatch: signifies a mismatch between the RefSeq transcript and the underlying primary genome assembly
sequence. Specifically, there is a mismatch in the CDS of the RefSeq model with respect to the primary genome assembly.

rseq_ens_match_cds: signifies that for the RefSeq transcript there is an overlapping Ensembl model that is identical across the
CDS region only. A CDS match is defined as follows: the CDS and peptide sequences are identical and the genomic
coordinates of every translatable exon match. Useful related attributes are: rseq_ens_match_wt and rseq_ens_no_match.

rseq_ens_match_wt: signifies that for the RefSeq transcript there is an overlapping Ensembl model that is identical across the
whole transcript. A whole transcript match is defined as follows: 1) In the case that both models are coding, the transcript, CDS
and peptide sequences are all identical and the genomic coordinates of every exon match. 2) In the case that both transcripts
are non-coding the transcript sequences and the genomic coordinates of every exon are identical. No comparison is made
between a coding and a non-coding transcript. Useful related attributes are: rseq_ens_match_cds and rseq_ens_no_match.

rseq_ens_no_match: signifies that for the RefSeq transcript there is no overlapping Ensembl model that is identical across
either the whole transcript or the CDS. This is caused by differences between the transcript, CDS or peptide sequences or
between the exon genomic coordinates. Useful related attributes are: rseq_ens_match_wt and rseq_ens_match_cds.

rseq_mrna_match: signifies an exact match between the RefSeq transcript and the underlying primary genome assembly
sequence (based on a match between the transcript stable id and an accession in the RefSeq mRNA file). An exact match
occurs when the underlying genomic sequence of the model can be perfectly aligned to the mRNA sequence post polyA
clipping.

rseq_mrna_nonmatch: signifies a non-match between the RefSeq transcript and the underlying primary genome assembly
sequence. A non-match is deemed to have occurred if the underlying genomic sequence does not have a perfect alignment to
the mRNA sequence post polyA clipping. It can also signify that no comparison was possible as the model stable id may not
have had a corresponding entry in the RefSeq mRNA file (sometimes happens when accessions are retired or changed). When
a non-match occurs one or several of the following transcript attributes will also be present to provide more detail on the nature
of the non-match: rseq_5p_mismatch, rseq_cds_mismatch, rseq_3p_mismatch, rseq_nctran_mismatch, rseq_no_comparison

rseq_nctran_mismatch: signifies a mismatch between the RefSeq transcript and the underlying primary genome assembly
sequence. This is a comparison between the entire underlying genomic sequence of the RefSeq model to the mRNA in the
case of RefSeq models that are non-coding.

rseq_no_comparison: signifies that no alignment was carried out between the underlying primary genome assembly sequence
and a corresponding RefSeq mRNA. The reason for this is generally that no corresponding, unversioned accession was found
in the RefSeq mRNA file for the transcript stable id. This sometimes happens when accessions are retired or replaced. A
second possibility is that the sequences were too long and problematic to align (though this is rare).

OverlapBP - Number of base pairs overlapping with the corresponding structural variation feature

OverlapPC - Percentage of corresponding structural variation feature overlapped by the given input

CHECK_REF - Reports variants where the input reference does not match the expected reference

AMBIGUITY - IUPAC allele ambiguity code
Example of VEP default output format:

11_224088_C/A 11:224088 A ENSG00000142082 ENST00000525319 Transcript
missense_variant 742 716 239 T/N aCc/aAc - SIFT=deleterious(0);PolyPhen=unknown(0)
11_224088_C/A 11:224088 A ENSG00000142082 ENST00000534381 Transcript
5_prime_UTR_variant - - - - - - -
11_224088_C/A 11:224088 A ENSG00000142082 ENST00000529055 Transcript

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_flag_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_flag_pick_allele
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq

downstream_variant - - - - - - -
11_224585_G/A 11:224585 A ENSG00000142082 ENST00000529937 Transcript
intron_variant - - - - - - HGVSc=ENST00000529937.1:c.136-346G>A
22_16084370_G/A 22:16084370 A - ENSR00000615113 RegulatoryFeature
regulatory_region_variant - - - - - - -

The VEP script will also add a header to the output file. This contains information about the databases connected to, and also a key
describing the key/value pairs used in the extra column.

ENSEMBL VARIANT EFFECT PREDICTOR v114.0
Output produced at 2017-03-21 14:51:27
Connected to homo_sapiens_core_114_38 on ensembldb.ensembl.org
Using cache in /homes/user/.vep/homo_sapiens/114_GRCh38
Using API version 114, DB version 114
polyphen version 2.2.2
sift version sift5.2.2
COSMIC version 78
ESP version 20141103
gencode version GENCODE 25
genebuild version 2014-07
HGMD-PUBLIC version 20162
regbuild version 16
assembly version GRCh38.p7
ClinVar version 201610
dbSNP version 147
Column descriptions:
Uploaded_variation : Identifier of uploaded variant
Location : Location of variant in standard coordinate format (chr:start or chr:start-end)
Allele : The variant allele used to calculate the consequence
Gene : Stable ID of affected gene
Feature : Stable ID of feature
Feature_type : Type of feature - Transcript, RegulatoryFeature or MotifFeature
Consequence : Consequence type
cDNA_position : Relative position of base pair in cDNA sequence
CDS_position : Relative position of base pair in coding sequence
Protein_position : Relative position of amino acid in protein
Amino_acids : Reference and variant amino acids
Codons : Reference and variant codon sequence
Existing_variation : Identifier(s) of co-located known variants
Extra column keys:
IMPACT : Subjective impact classification of consequence type
DISTANCE : Shortest distance from variant to transcript
STRAND : Strand of the feature (1/-1)
FLAGS : Transcript quality flags

Tab-delimited output

The --tab flag instructs VEP to write output as a tab-delimited table.
This differs from the default output format in that each individual field from the "Extra" field is written to a separate tab-
delimited column.
This makes the output more suitable for import into spreadsheet programs such as Excel.
Furthermore the header is the same as the one for the VEP default output format and this is also the format used when selecting the
"TXT" option on the VEP web interface.

Example of VEP tab-delimited output format:

#Uploaded_variation Location Allele Gene Feature Feature_type
Consequence cDNA_position CDS_position Protein_position Amino_acids
Codons Existing_variation IMPACT DISTANCE STRAND FLAGS
11_224088_C/A 11:224088 A ENSG00000142082 ENST00000525319 Transcript
missense_variant 742 716 239 S/I
aGc/aTc - MODERATE - -1 -
11_224088_C/A 11:224088 A ENSG00000142082 ENST00000534381 Transcript
downstream_gene_variant - - - -
- - MODIFIER 1674 -1 -

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_tab

11_224088_C/A 11:224088 A ENSG00000142082 ENST00000529055 Transcript
downstream_gene_variant - - - -
- - MODIFIER 134 -1 -
11_224585_G/A 11:224585 A ENSG00000142082 ENST00000529937 Transcript
intron_variant,NMD_transcript_variant - - - -
- - MODIFIER - -1 -

The choice and order of columns in the output may be configured using --fields. For instance:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --tab --fields "Uploaded
variation,Location,Allele,Gene"

VCF output

The VEP script can also generate VCF output using the --vcf flag.

Main information about the specificity of the VEP VCF output format:

Consequences are added in the INFO field of the VCF file, using the key "CSQ" (you can change it using --vcf_info_field).

Data fields are encoded separated by the character "|" (pipe). The order of fields is written in the VCF header. Unpopulated fields
are represented by an empty string.

Output fields in the "CSQ" INFO field can be configured by using --fields.

Each prediction, for a given variant, is separated by the character "," in the CSQ INFO field (e.g. when a variant overlaps more than
1 transcript)

Here is a list of the (default) fields you can find within the CSQ field:

Allele|Consequence|IMPACT|SYMBOL|Gene|Feature_type|Feature|BIOTYPE|EXON|INTRON|HGVSc|HGVSp|cDNA_po
sition|CDS_position|Protein_position|Amino_acids|Codons|Existing_variation|DISTANCE|STRAND|FLAGS|S
YMBOL_SOURCE|HGNC_ID

Example of VEP command using the --vcf and --fields options:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite --vcf --fields
"Allele,Consequence,Feature_type,Feature"

VCFs produced by VEP can be filtered by filter_vep.pl in the same way as standard format output files.

If the input format was VCF, the file will remain unchanged save for the addition of the CSQ field and the header (unless using any
filtering). If an existing CSQ field is found, it will be replaced by the one added by the VEP (use --keep_csq to preserve it).

Custom data added with --custom are added as separate fields, using the key specified for each data file.

Commas in fields are replaced with ampersands (&) to preserve VCF format.

##INFO=<ID=CSQ,Number=.,Type=String,Description="Consequence annotations from Ensembl VEP. Format:
Allele|Consequence|IMPACT|SYMBOL|Gene|Feature_type|Feature|BIOTYPE|EXON|INTRON|HGVSc|HGVSp|cDNA_po
sition|CDS_position|Protein_position">
#CHROM POS ID REF ALT QUAL FILTER INFO
21 26978790 rs75377686 T C . .
CSQ=C|missense_variant|MODERATE|MRPL39|ENSG00000154719|Transcript|ENST00000419219|protein_coding|2
/8||ENST00000419219.1:c.251A>G|ENSP00000404426.1:p.Asn84Ser|260|251|84

JSON output

VEP can produce output in the form of serialised JSON objects using the --json flag. JSON is a serialisation format that can be parsed
and processed easily by many packages and programming languages; it is used as the default output format for Ensembl's REST
server .

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fields
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_vcf
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_vcf_info_field
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fields
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_vcf
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fields
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_keep_csq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_custom
http://json.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_json
http://rest.ensembl.org/
http://rest.ensembl.org/

Each input variant is reported as a single JSON object which constitutes one line of the output file. The JSON object is structured
somewhat differently to the other VEP output formats, in that per-variant fields (e.g. co-located existing variant details) are reported only
once. Consequences are grouped under the feature type that they affect (Transcript, Regulatory Feature, etc). The original input line
(e.g. from VCF input) is reported under the "input" key in order to aid aligning input with output. When using a cache file, frequencies for
co-located variants are reported by default (see --af_1kg, --af_gnomade).

Here follows an example of JSON output (prettified and redacted for display here):

{
 "input": "1 1918090 test1 A G . . .",
 "id": "test1",
 "seq_region_name": "1",
 "start": 1918090,
 "end": 1918090,
 "strand": 1,
 "allele_string": "A/G",
 "most_severe_consequence": "missense_variant",
 "colocated_variants": [
 {
 "id": "COSV57068665",
 "seq_region_name": "1",
 "start": 1918090,
 "end": 1918090,
 "strand": 1,
 "allele_string": "COSMIC_MUTATION"
 },
 {
 "id": "rs28640257",
 "seq_region_name": "1",
 "start": 1918090,
 "end": 1918090,
 "strand": 1,
 "allele_string": "A/G/T",
 "minor_allele": "G",
 "minor_allele_freq": 0.352,
 "frequencies": {
 "G": {
 "amr": 0.5072,
 "gnomade_sas": 0.3635,
 "gnomade": 0.481,
 "gnomade_remaining": 0.4536,
 "gnomade_asj": 0.3939,
 "gnomade_nfe": 0.5042,
 "gnomade_afr": 0.0975,
 "afr": 0.053,
 "gnomade_amr": 0.5568,
 "gnomade_fin": 0.4751,
 "sas": 0.3906,
 "gnomade_eas": 0.4516,
 "eur": 0.4901,
 "eas": 0.4623,
 "gnomade_mid: "0.3306"
 }
 }
 }
],
 "transcript_consequences": [
 {
 "variant_allele": "G",
 "consequence_terms": [
 "missense_variant"
],
 "gene_id": "ENSG00000178821",
 "transcript_id": "ENST00000310991",
 "strand": -1,
 "cdna_start": 436,
 "cdna_end": 436,
 "cds_start": 422,
 "cds_end": 422,
 "protein_start": 141,

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_gnomade

 "protein_end": 141,
 "codons": "aTg/aCg",
 "amino_acids": "M/T",
 "polyphen_prediction": "benign",
 "polyphen_score": 0.001,
 "sift_prediction": "tolerated",
 "sift_score": 0.22,
 "hgvsp": "ENSP00000311122.3:p.Met141Thr",
 "hgvsc": "ENST00000310991.8:c.422T>C"
 }
],
 "regulatory_feature_consequences": [
 {
 "variant_allele": "G",
 "consequence_terms": [
 "regulatory_region_variant"
],
 "regulatory_feature_id": "ENSR00000000255"
 }
]
}

In accordance with JSON conventions, all keys (except alleles) are lower-case. Some keys also have different names and structures to
those found in the other VEP output formats:

Key JSON equivalent(s) Notes

Consequence consequence_terms

Gene gene_id

Feature transcript_id,
regulatory_feature_id,
motif_feature_id

Consequences are grouped under the feature type they affect

ALLELE variant_allele

SYMBOL gene_symbol

SYMBOL_SOURCE gene_symbol_source

ENSP protein_id

OverlapBP bp_overlap

OverlapPC percentage_overlap

Uploaded_variation id

Location seq_region_name, start, end,
strand

The variant's location field is broken down into constituent coordinate parts for
clarity. "seq_region_name" is used in place of "chr" or "chromosome" for
consistency with other parts of Ensembl's REST API

*_maf *_allele, *_maf

cDNA_position cdna_start, cdna_end

CDS_position cds_start, cds_end

Protein_position protein_start, protein_end

SIFT sift_prediction, sift_score

PolyPhen polyphen_prediction,
polyphen_score

Statistics

VEP writes an HTML file containing statistics pertaining to the results of your job; it is named [output_file]_summary.html (with the
default options the file will be named variant_effect_output.txt_summary.html). To view it, please open the file in your web browser.

To prevent VEP writing a stats file, use --no_stats.

To get a machine-readable text file in place of the HTML file, use --stats_text. You can get both a HTML file and plain text file by
using both --stats_text and --stats_html.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_stats
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_stats_text
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_stats_text
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_stats_html

General statistics

Summary of called consequence
types Distribution of variants across

chromosomes

To change the name of the stats file from the default, use --stats_file [file].

The page contains several sections:

General statistics

This section contains two tables. The first describes the cache and/or database used, the version of VEP, species, command line
parameters, input/output files and run time. The second table contains information about the number of variants, and the number of
genes, transcripts and regulatory features overlapped by the input.

Charts and tables

There then follows several charts, most with accompanying tables. Tables and charts are interactive; clicking on a row to highlight it in
the table will highlight the relevant segment in the chart, and vice versa.

https://www.ensembl.org/img/vep_stats_1.png
https://www.ensembl.org/img/vep_stats_1.png
https://www.ensembl.org/img/vep_stats_1.png
https://www.ensembl.org/img/vep_stats_2.png
https://www.ensembl.org/img/vep_stats_2.png
https://www.ensembl.org/img/vep_stats_2.png
https://www.ensembl.org/img/vep_stats_2.png
https://www.ensembl.org/img/vep_stats_3.png
https://www.ensembl.org/img/vep_stats_3.png
https://www.ensembl.org/img/vep_stats_3.png
https://www.ensembl.org/img/vep_stats_3.png
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_stats_file

 ./vep [options]

 ./vep --help

 ./vep --cache -i input.txt -o output.txt

Variant Effect Predictor Running VEP

VEP is run on the command line as follows (assuming you are in the ensembl-vep directory):

where [options] represent a set of flags and options. A basic set of flags can be listed using --help:

VEP can be run in the following modes:

For optimum performance, download a cache file for your species of interest, using either the installer or by following the VEP
Cache documentation, and run VEP with either the --cache or --offline option.

By connecting to the public Ensembl database servers in place of a cache. This can be adequate when annotating small files, but
the database servers can become busy and slow. To enable this option, use --database.

To run VEP using your own species and assembly, please use a --fasta file and --gff or --gtf annotation.

To run VEP with default options, use the following command:

where input.txt contains data in one of the compatible input formats and output.txt is the output file to be created.

Options can be passed as the full string (e.g. --format), or as the shortest unique string among the options (e.g. --form for --format, since
there is another option --force_overwrite).

You may use one or two hypen ("-") characters before each option name; --cache or -cache.

VEP options can also be read from:

Configuration files using --config. Options set in configuration files are overriden if specified on the command line.

Environment variables that start with prefix VEP_. For instance, you can set the cache flag with export VEP_CACHE=1 and the
input flag with export VEP_INPUT="/path/to/input.txt" before running ./vep. Options set in environment variables are
overriden if specified in configuration files or on the command line.

Basic options

Flag Alternate Description Incompatibl
e with

--help Display help message and quit

--quiet -q Suppress warning messages.Not used by default --verbose

--verbose -v Print out a bit more information while running. Not used by default --quiet

--config [filename] Load configuration options from a config file. The config file should consist of
whitespace-separated pairs of option names and settings e.g.:

output_file my_output.txt
species mus_musculus
format vcf
host useastdb.ensembl.org

A config file can also be implicitly read; save the file as $HOME/.vep/vep.ini
(or equivalent directory if using --dir). Any options in this file will be overridden
by those specified in a config file using --config, and in turn by any options
specified on the command line. You can create a quick version file of this by

https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#pre
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#pre
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#input
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_format
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_form
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_format
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_force_overwrite
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_dir
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_config

setting the flags as normal and running VEP in verbose (-v) mode. This will
output lines that can be copied to a config file that can be loaded in on the next
run using --config. Not used by default

--everything -e Shortcut flag to switch on all of the following:
--sift b, --polyphen b, --ccds, --hgvs, --symbol, --numbers, --domains, --
regulatory, --canonical, --protein, --biotype, --af, --af_1kg, --af_esp, --
af_gnomade, --af_gnomadg, --max_af, --pubmed, --uniprot, --mane, --tsl, --
appris, --variant_class, --gene_phenotype, --mirna

--species [species] Species for your data. This can be the latin name e.g. "homo_sapiens" or any
Ensembl alias e.g. "mouse". Specifying the latin name can speed up initial
database connection as the registry does not have to load all available
database aliases on the server. Default = "homo_sapiens"

--assembly [name] -a Select the assembly version to use if more than one available. If using the
cache, you must have the appropriate assembly's cache file installed. If not
specified and you have only 1 assembly version installed, this will be chosen
by default. Default = use found assembly version

--input_file
[filename]

-i Input file name. If not specified, VEP will attempt to read from STDIN. Can use
compressed file (gzipped).

--input_data
[string]

--id Raw input data as a string. May be used, for example, to input a single rsID or
HGVS notation quickly to vep:

--input_data rs699

--format [format] Input file format - one of "ensembl", "vcf", "hgvs", "id", "region", "spdi".
By default, VEP auto-detects the input file format. Using this option you can
specify the input file is Ensembl, VCF, IDs, HGVS, SPDI or region format. Can
use compressed version (gzipped) of any file format listed above. Auto-detects
format by default

--output_file
[filename]

-o Output file name. Results can write to STDOUT by specifying 'STDOUT' as the
output file name - this will force quiet mode. Default =
"variant_effect_output.txt"

--force_overwrite --force By default, VEP will fail with an error if the output file already exists. You can
force the overwrite of the existing file by using this flag. Not used by default

--no_stats Don't generate a stats file. Provides marginal gains in run time.

--stats_file
[filename]

--sf Summary stats file name. This file contains a summary of the VEP run. If stats
are returned in an HTML file (default), the filename should end in .html or
.htm. Default = "variant_effect_output.txt_summary.html"

--stats_html Generate a HTML stats file (default).

--stats_text Generate a plain text stats file. Can be combined with --stats_html to
generate both plain text and HTML stats files.

--warning_file
[filename]

 File name to write warnings and errors to. Default = STDERR (standard error)

--
skipped_variants_fil
e [filename]

 File name to write skipped variants to. Default = STDERR (standard error)

--max_sv_size Extend the maximum Structural Variant size VEP can process. Default =
10000000

--
no_check_variants_or
der

 Permit the use of unsorted input files. However running VEP on unsorted input
files slows down the tool and requires more memory.

--fork [num_forks] Enable forking, using the specified number of forks. Forking can dramatically
improve runtime. Not used by default

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_config
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#input
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#stats
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#stats
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#faster

--safe By default, a VEP run is successful even when a plugin reports issues. Use
this flag to ensure VEP fails if a plugin raises warnings or generates
compilation errors. This is particularly useful to ensure plugins run successfully
when using VEP in pipelines. Not used by default

Cache options

Flag Alternate Description Output fields Incompatibl
e with

--cache Enables use of the cache. Add --refseq or --merged to use
the refseq or merged cache, (if installed).

 --database

--dir [directory] Specify the base cache/plugin directory to use. Default =
"$HOME/.vep/"

--dir_cache
[directory]

 Specify the cache directory to use. Default = "$HOME/.vep/"

--dir_plugins
[directory]

 Specify the plugin directory to use. Default = "$HOME/.vep/"

--offline Enable offline mode. No database connections will be made,
and a cache file or GFF/GTF file is required for annotation.
Add --refseq to use the refseq cache (if installed). Not used
by default

 --database
--check_svs
--lrg

--fasta [file|dir] --fa Specify a FASTA file or a directory containing FASTA files to
use to look up reference sequence. The first time you run
VEP with this parameter an index will be built which can take
a few minutes. This is required if fetching HGVS annotations
(--hgvs) or checking reference sequences (--check_ref) in
offline mode (--offline), and optional with some performance
increase in cache mode (--cache). See documentation for
more details. Not used by default

--refseq Specify this option if you have installed the RefSeq cache in
order for VEP to pick up the alternate cache directory. This
cache contains transcript objects corresponding to RefSeq
transcripts. Consequence output will be given relative to
these transcripts in place of the default Ensembl transcripts
(see documentation)

REFSEQ_MAT
CH, BAM_EDIT

--
gencode_bas
ic
--
gencode_pri
mary
--merged

--merged Use the merged Ensembl and RefSeq cache. Consequences
are flagged with the SOURCE of each transcript used.

REFSEQ_MAT
CH, BAM_EDIT,
SOURCE

--refseq

--cache_version Use a different cache version than the assumed default (the
VEP version). This should be used with Ensembl Genomes
caches since their version numbers do not match Ensembl
versions. For example, the VEP/Ensembl version may be 88
and the Ensembl Genomes version 35. Not used by default

--show_cache_info Show source version information for selected cache and quit

--buffer_size
[number]

 Sets the internal buffer size, corresponding to the number of
variants that are read in to memory simultaneously. Set this
lower to use less memory at the expense of longer run time,
and higher to use more memory with a faster run time.
Default = 5000

Other annotation sources

https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq

Flag Alternate Description Output fields
--plugin [plugin
name]

 Use named plugin. Plugin modules should be installed in the Plugins
subdirectory of the VEP cache directory (defaults to $HOME/.vep/).
Multiple plugins can be used by supplying the --plugin flag multiple
times. See plugin documentation. Not used by default

Plugin-dependent

--custom file=
[filename]

 Add custom annotation to the output. Files must be tabix indexed or
in the bigWig format. Multiple files can be specified by supplying the -
-custom flag multiple times. See here for full details. Not used by
default

SOURCE, Custom
file dependent

--gff [filename] Use GFF transcript annotations in [filename] as an annotation
source. Requires a FASTA file of genomic sequence. Not used by
default

SOURCE

--gtf [filename] Use GTF transcript annotations in [filename] as an annotation
source. Requires a FASTA file of genomic sequence. Not used by
default

SOURCE

--bam [filename] ADVANCED Use BAM file of sequence alignments to correct
transcript models not derived from reference genome sequence.
Used to correct RefSeq transcript models. Enables --
use_transcript_ref; add --use_given_ref to override this behaviour.
Not used by default

BAM_EDIT

--use_transcript_ref By default VEP uses the reference allele provided in the input file to
calculate consequences for the provided alternate allele(s). Use this
flag to force VEP to replace the provided reference allele with
sequence derived from the overlapped transcript. This is especially
relevant when using the RefSeq cache, see documentation for more
details. The GIVEN_REF and USED_REF fields are set in the output
to indicate any change. Not used by default

GIVEN_REF,
USED_REF

--use_given_ref Using --bam or a BAM-edited RefSeq cache by default enables --
use_transcript_ref; add this flag to override this behaviour and use
the provided reference allele from the input. Not used by default

--
custom_multi_allelic

 By default, comma separated lists found within the INFO field of
custom annotation VCFs are assumed to be allele specific. For
example, a variant with allele_string A/G/C with associated custom
annotation 'single,double,triple' will associate triple with C, double
with G and single with A. This flag instructs VEP to return all
annotations for all alleles. Not used by default

Output format options

Flag Alternate Description Output
fields

Incompatibl
e with

--vcf Writes output in VCF format. Consequences are added in the
INFO field of the VCF file, using the key "CSQ". Data fields
are encoded separated by "|"; the order of fields is written in
the VCF header. Output fields in the "CSQ" INFO field can
be selected by using --fields.

If the input format was VCF, the file will remain unchanged
save for the addition of the CSQ field (unless using any
filtering).

Custom data added with --custom are added as separate
fields, using the key specified for each data file.

Commas in fields are replaced with ampersands (&) to
preserve VCF format.

Not used by default

 --json
--tab
--summary
--
most_severe
--ga4gh_vrs

--tab Writes output in tab-delimited format. Not used by default --json
--vcf

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_plugin
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_custom
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_custom
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq_bam
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq_bam
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq_bam
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#vcfout
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#tab

--json Writes output in JSON format. Not used by default --tab
--vcf

--compress_output
[gzip|bgzip]

 Writes output compressed using either gzip or bgzip. Not
used by default

--fields [list] Configure the output format using a comma separated list of
fields.
Can only be used with tab (--tab) or VCF format (--vcf)
output.
For the tab format output, the selected fields may be those
present in the default output columns, or any of those that
appear in the Extra column (including those added by plugins
or custom annotations) if the appropriate output is available
(e.g. use --show_ref_allele to access 'REF_ALLELE'). Output
remains tab-delimited.
For the VCF format output, the selected fields are those
present within the "CSQ" INFO field.

Example of command for the tab output:

--tab --fields
"Uploaded_variation,Location,Allele,Gene"

Example of command for the VCF format output:

--vcf --fields
"Allele,Consequence,Feature_type,Feature"

Not used by default

--minimal Convert alleles to their most minimal representation before
consequence calculation i.e. sequence that is identical
between each pair of reference and alternate alleles is
trimmed off from both ends, with coordinates adjusted
accordingly.
Note this may lead to discrepancies between input
coordinates and coordinates reported by VEP relative to
transcript sequences; to avoid issues, use --allele_number
and/or ensure that your input variants have unique
identifiers. The MINIMISED flag is set in the VEP output
where relevant. For an insertion/deletion, the allele is
minimised by default. To access the input allele before
minimisation, use --uploaded_allele.
Not used by default

MINIMISED --individual

Output options

Flag Alternate Description Output
fields

Incompatibl
e with

--variant_class Output the Sequence Ontology variant class. Not used by
default

VARIANT_C
LASS

--sift [p|s|b] Species limited SIFT predicts whether an amino acid
substitution affects protein function based on sequence
homology and the physical properties of amino acids. VEP can
output the prediction term, score or both. Not used by default

SIFT --
most_severe
--summary

--polyphen [p|s|b] Human only PolyPhen is a tool which predicts possible
impact of an amino acid substitution on the structure and
function of a human protein using straightforward physical and
comparative considerations. VEP can output the prediction
term, score or both. VEP uses the humVar score by default -
use --humdiv to retrieve the humDiv score. Not used by default

PolyPhen --
most_severe
--summary

https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#json
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#tab
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#vcfout
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output
https://www.ensembl.org/info/genome/variation/prediction/classification.html#classes
http://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/

--humdiv Human only Retrieve the humDiv PolyPhen prediction
instead of the default humVar. Not used by default

PolyPhen

--nearest
[transcript|gene|sym
bol]

 Retrieve the transcript or gene with the nearest protein-coding
transcription start site (TSS) to each input variant. Use
"transcript" to retrieve the transcript stable ID, "gene" to retrieve
the gene stable ID, or "symbol" to retrieve the gene symbol.
Note that the nearest TSS may not belong to a transcript that
overlaps the input variant, and more than one may be reported
in the case where two are equidistant from the input
coordinates.

Currently only available when using a cache annotation source,
and requires the Set::IntervalTree perl module.

Not used by default

NEAREST

--distance
[bp_distance(,downst
ream_distance)]

 Modify the distance up and/or downstream between a variant
and a transcript for which VEP will assign the
upstream_gene_variant or downstream_gene_variant
consequences. Giving one distance will modify both up- and
downstream distances; prodiving two separated by commas will
set the up- (5') and down- (3') stream distances respectively.
Default: 5000

--overlaps Report the proportion and length of a transcript overlapped by a
structural variant in VCF format.

--gene_phenotype Indicates if the overlapped gene is associated with a
phenotype, disease or trait. See list of phenotype sources. Not
used by default

GENE_PHE
NO

--regulatory Look for overlaps with regulatory regions. VEP can also report if
a variant falls in a high information position within a
transcription factor binding site. Output lines have a Feature
type of RegulatoryFeature or MotifFeature. Not used by default

MOTIF_NAM
E,
MOTIF_POS
,
HIGH_INF_P
OS,
MOTIF_SCO
RE_CHANG
E

--cell_type Report only regulatory regions that are found in the given cell
type(s). Can be a single cell type or a comma-separated list.
The functional type in each cell type is reported under
CELL_TYPE in the output. To retrieve a list of cell types, use --
cell_type list. Not used by default

CELL_TYPE

--individual
[all|ind list]

 Consider only alternate alleles present in the genotypes of the
specified individual(s). May be a single individual, a comma-
separated list or "all" to assess all individuals separately.
Individual variant combinations homozygous for the given
reference allele will not be reported. Each individual and variant
combination is given on a separate line of output. Only works
with VCF files containing individual genotype data; individual
IDs are taken from column headers. Not used by default

IND, ZYG --minimal
--
individual_zy
g

--individual_zyg
[all|ind list]

 Consider alternate and reference alleles present in the
genotypes of the specified individual(s). May be a single
individual, a comma-separated list or "all" to assess all
individuals separately. Returns a list of individuals and their
zygosity. Only works with VCF files containing individual
genotype data; individual IDs are taken from column headers.
Not used by default

ZYG --individual

--phased Force VCF genotypes to be interpreted as phased. For use with
plugins that depend on phased data. Not used by default

--allele_number Identify allele number from VCF input, where 1 = first ALT allele,
2 = second ALT allele etc. Useful when using --minimal Not
used by default

ALLELE_NU
M

--show_ref_allele Adds the reference allele in the output (after minimisation).
Mainly useful for the VEP "default" and tab-delimited output
formats. Not used by default

REF_ALLEL
E

http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview#prediction
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#additional
https://www.ensembl.org/info/genome/variation/phenotype/sources_phenotype_documentation.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cell_type
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cell_type

--uploaded_allele Adds the uploaded allele string in the output (before
minimisation).

UPLOADED
_ALLELE

--total_length Give cDNA, CDS and protein positions as Position/Length. Not
used by default

--numbers Adds affected exon and intron numbering to to output. Format is
Number/Total. Not used by default

EXON,
INTRON

--
most_severe
--summary

--mirna Reports where the variant lies in the miRNA secondary
structure (only for Ensembl/GENCODE transcripts). Not used
by default

--no_escape Don't URI escape HGVS strings. Default = escape

--keep_csq Don't overwrite existing CSQ entry in VCF INFO field.
Overwrites by default

--vcf_info_field
[CSQ|ANN|(other)]

 Change the name of the INFO key that VEP write the
consequences to in its VCF output. Use "ANN" for compatibility
with other tools such as snpEff . Default: CSQ

--terms
[SO|display|NCBI]

-t The type of consequence terms to output. The Ensembl terms
are described here. The Sequence Ontology is a joint effort
by genome annotation centres to standardise descriptions of
biological sequences. Default = "SO"

--no_headers Don't write header lines in output files. Default = add headers

--shift_3prime [0|1] Right aligns all variants relative to their associated transcripts
prior to consequence calculation.
An example using this option can be found here.
Default = 0

--shift_hgvs

--shift_genomic
[0|1]

 Right aligns all variants, including intergenic variants, before
consequence calculation and updates the Location field.
An example using this option can be found here.
Default = 0

--shift_hgvs

--shift_length Reports the distance each variant has been shifted when used
in conjuction with --shift_3prime

Identifiers

Flag Alternate Description Output
fields

Incompatibl
e with

--hgvs Add HGVS nomenclature based on Ensembl stable identifiers
to the output. Both coding and protein sequence names are
added where appropriate. To generate HGVS identifiers when
using --cache or --offline you must use a FASTA file and --fasta.
HGVS notations given on Ensembl identifiers are versioned.
Not used by default

HGVSc,
HGVSp,
HGVS_OFF
SET

--hgvsg Add genomic HGVS nomenclature based on the input
chromosome name. To generate HGVS identifiers when using -
-cache or --offline you must use a FASTA file and --fasta. Not
used by default

HGVSg

--
hgvsg_use_accession

 Force --hgvsg to return RefSeq reference sequence. For
example, reports NC_000002.11 for human chromosome 2
(build GRCh38).

HGVSg

--
hgvsp_use_prediction

 Force --hgvs to return the HGVSp notation in predicted format.
For example, ENSP00000233741.4:p.Thr367AsnfsTer13 will be
returned as ENSP00000233741.4:p.(Thr367AsnfsTer13).

HGVSp

--ambiguous_hgvs
[0|1]

 Allow input HGVSp to resolve to all genomic locations.
Otherwise, most likely transcript will be selected. Default: 0
(most likely transcript selected)

https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#vcfout
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#vcfout
http://snpeff.sourceforge.net/
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
http://www.sequenceontology.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#shifting
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#shifting
http://varnomen.hgvs.org/
https://www.ensembl.org/info/genome/stable_ids/index.html
http://varnomen.hgvs.org/

--spdi Add genomic SPDI notation. To generate SPDI when using --
cache or --offline you must use a FASTA file and --fasta. Not
used by default

SPDI

--ga4gh_vrs Add GA4GH Variation Representation Specification (VRS)
notation. To generate GA4GH VRS when using --cache or --
offline you must use a FASTA file and --fasta. Not used by
default

GA4GH_VR
S

--vcf

--shift_hgvs [0|1] Enable or disable 3' shifting of HGVS notations. HGVS
nomenclature requires an ambiguous sequence change to be
described at the most 3' possible location. When enabled, this
causes "shifting" to the most 3' possible coordinates (relative to
the transcript sequence and strand) before the HGVS notations
are calculated; the flag HGVS_OFFSET is set to the number of
bases by which the variant has shifted, relative to the input
genomic coordinates. If HGVS_OFFSET is equals to 0, no
value will be added to HGVS_OFFSET column. To disable the
changing of location at transcript level set --shift_hgvs to 0.
Default: 1 (shift)

 --
shift_3prime
--
shift_genomi
c

--transcript_version Add version numbers to Ensembl transcript identifiers

--gene_version Add version numbers to Ensembl gene identifiers

--protein Add the Ensembl protein identifier to the output where
appropriate. Not used by default

ENSP --
most_severe
--summary

--symbol Adds the gene symbol (e.g. HGNC) (where available) to the
output. Some gene symbol, e.g. HGNC, are only available in
merged and Ensembl caches and therefore should not be used
with the --refseq cache option. Not used by default

SYMBOL,
SYMBOL_S
OURCE,
HGNC_ID

--
most_severe
--summary

--ccds Adds the CCDS transcript identifer (where available) to the
output. Not used by default

CCDS --
most_severe
--summary

--uniprot Adds best match accessions for translated protein products
from three UniProt -related databases (SWISSPROT,
TREMBL and UniParc) to the output. Not used by default

SWISSPROT
, TREMBL,
UNIPARC,
UNIPROT_IS
OFORM

--
most_severe
--summary

--tsl Adds the transcript support level for this transcript to the output.
Not used by default

TSL --
most_severe
--summary

--appris Adds the APPRIS isoform annotation for this transcript to the
output. Not used by default

APPRIS --
most_severe
--summary

--canonical Adds a flag indicating if the transcript is the canonical transcript
for the gene. Not used by default

CANONICAL --
most_severe
--summary

--mane Adds a flag indicating if the transcript is the MANE Select or
MANE Plus Clinical transcript for the gene. If --cache or --
database annotation source is used, the alternative transcript
stable ID is also added. Not used by default

MANE,
MANE_SELE
CT,
MANE_PLU
S_CLINICAL

--
most_severe
--summary

--mane_select Adds a flag indicating if the transcript is the MANE Select
transcript for the gene. If --cache or --database annotation
source is used, the alternative transcript stable ID is also
added. Not used by default

MANE,
MANE_SELE
CT

--
most_severe
--summary

--biotype Adds the biotype of the transcript or regulatory feature. Not
used by default

BIOTYPE --
most_severe
--summary

https://www.ncbi.nlm.nih.gov/variation/notation/
https://vrs.ga4gh.org/
http://www.ebi.ac.uk/uniprot
https://www.ensembl.org/Help/Glossary?id=492
https://www.ensembl.org/Help/Glossary?id=521
https://www.ensembl.org/info/genome/genebuild/mane.html
https://www.ensembl.org/info/genome/genebuild/mane.html
https://www.ensembl.org/info/genome/genebuild/mane.html

--domains Adds names of overlapping protein domains to output. Not used
by default

DOMAINS --
most_severe
--summary

--xref_refseq Output aligned RefSeq mRNA identifier for transcript. Not used
by default

RefSeq --
most_severe
--summary

--synonyms [file] Load a file of chromosome synonyms. File should be tab-
delimited with the primary identifier in column 1 and the
synonym in column 2. Synonyms allow different chromosome
identifiers to be used in the input file and any annotation source
(cache, database, GFF, custom file, FASTA file). Not used by
default

Co-located variants

Flag Alternate Description Output
fields

Incompatibl
e with

--check_existing Checks for the existence of known variants that are co-located
with your input. By default the alleles are compared and
variants on an allele-specific basis - to compare only
coordinates, use --no_check_alleles.

Some databases may contain variants with unknown (null)
alleles and these are included by default; to exclude them use -
-exclude_null_alleles.

See this page for more details.

Not used by default

Existing_vari
ation,
CLIN_SIG,
SOMATIC,
PHENO

--check_svs Checks for the existence of structural variants that overlap your
input. Currently requires database access. Not used by default

SV --offline

--clin_sig_allele
[1|0]

 Return allele specific clinical significance. Setting this option to
0 will provide all known clinical significance values at the given
locus. Default: 1 (Provide allele-specific annotations)

CLIN_SIG

--
exclude_null_alleles

 Do not include variants with unknown alleles when checking for
co-located variants. Our human database contains variants
from HGMD and COSMIC for which the alleles are not
publically available; by default these are included when using --
check_existing, use this flag to exclude them. Not used by
default

--no_check_alleles When checking for existing variants, by default VEP only
reports a co-located variant if none of the input alleles are
novel. For example, if your input variant has alleles A/G, and an
existing co-located variant has alleles A/C, the co-located
variant will not be reported.

Strand is also taken into account - in the same example, if the
input variant has alleles T/G but on the negative strand, then
the co-located variant will be reported since its alleles match
the reverse complement of input variant.

Use this flag to disable this behaviour and compare using
coordinates alone. Not used by default

--af Add the global allele frequency (AF) from 1000 Genomes
Phase 3 data for any known co-located variant to the output.
For this and all --af_* flags, the frequency reported is for the
input allele only, not necessarily the non-reference or derived
allele. Not used by default

AF

--max_af Report the highest allele frequency observed in any population
from 1000 genomes, ESP or gnomAD. Not used by default

MAX_AF,
MAX_AF_PO

--database

https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#colocated

PS

--af_1kg Add allele frequency from continental populations
(AFR,AMR,EAS,EUR,SAS) of 1000 Genomes Phase 3 to the
output. Must be used with --cache. Not used by default

AFR_AF,
AMR_AF,
EAS_AF,
EUR_AF,
SAS_AF

--database

--af_esp Include allele frequency from NHLBI-ESP populations. Must
be used with --cache. Deprecated.

AA_AF,
EA_AF

--database

--af_gnomade --
af_gnoma
d

Include allele frequency from Genome Aggregation Database
(gnomAD) exome populations. Note only data from the
gnomAD exomes are included; to retrieve data from the
additional genomes data set, see this guide. Must be used with
--cache Not used by default

gnomADe_A
F,
gnomADe_A
FR_AF,
gnomADe_A
MR_AF,
gnomADe_A
SJ_AF,
gnomADe_E
AS_AF,
gnomADe_FI
N_AF,
gnomADe_N
FE_AF,
gnomADe_O
TH_AF,
gnomADe_S
AS_AF

--database
--af_gnomad

--af_gnomadg Include allele frequency from Genome Aggregation Database
(gnomAD) genome populations. Note only data from the
gnomAD genomes are included; to retrieve data from the
additional genomes data set, see this guide. Must be used with
--cache Not used by default

gnomADg_A
F,
gnomADg_A
FR_AF,
gnomADg_A
MI_AF,
gnomADg_A
MR_AF,
gnomADg_A
SJ_AF,
gnomADg_E
AS_AF,
gnomADg_FI
N_AF,
gnomADg_M
ID_AF,
gnomADg_N
FE_AF,
gnomADg_O
TH_AF,
gnomADg_S
AS_AF

--database

--af_exac Include allele frequency from ExAC project populations. Must
be used with --cache. Deprecated.

ExAC_AF,
ExAC_Adj_A
F,
ExAC_AFR_
AF,
ExAC_AMR_
AF,
ExAC_EAS_
AF,
ExAC_FIN_A
F,
ExAC_NFE_
AF,
ExAC_OTH_
AF,
ExAC_SAS_
AF

--database

--pubmed Report Pubmed IDs for publications that cite existing variant.
Must be used with --cache. Not used by default

PUBMED --database

http://www.1000genomes.org/
http://evs.gs.washington.edu/EVS/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad
http://exac.broadinstitute.org/

--var_synonyms Report known synonyms for co-located variants. Must be used
with --cache. Not used by default

VAR_SYNO
NYMS

--database

--failed [0|1] When checking for co-located variants, by default VEP will
exclude variants that have been flagged as failed. Set this flag
to include such variants. Default: 0 (exclude)

Filtering and QC options

NOTE: The filtering options here filter your results before they are written to your output file. Using VEP's filtering script, it is possible to
filter your results after VEP has run. This way you can retain all of the results and run multiple filter sets on the same results to find
different data of interest.

Flag Alternate Description Output
fields

Incompatibl
e with

--gencode_basic Limit your analysis to transcripts belonging to the GENCODE
basic set. This set has fragmented or problematic transcripts
removed. Not used by default

 --
gencode_pri
mary
--refseq

--gencode_primary Limit your analysis to transcripts belonging to the GENCODE
primary set. This set covers all human exons in a minimal set of
transcripts. Not used by default

 --
gencode_bas
ic
--refseq

--exclude_predicted When using the RefSeq or merged cache, exclude predicted
transcripts (i.e. those with identifiers beginning with "XM_" or
"XR_").

--transcript_filter ADVANCED Filter transcripts according to any arbitrary set of
rules. Uses similar notation to filter_vep.

You may filter on any key defined in the root of the transcript
object; most commonly this will be "stable_id":

--transcript_filter "stable_id match N[MR]_"

or, a list of stable ids in file acting as a allowlist or a blocklist:

--transcript_filter "not stable_id in
blocklist.txt"

--check_ref Force VEP to check the supplied reference allele against the
sequence stored in the Ensembl Core database or supplied
FASTA file. Lines that do not match are skipped. Checking is
done on the minimised sequence. Example chr13 32900399 .
AGT A . the As are removed and the reference sequence is
checked from 32900400 to see if it matches GTNot used by
default

 --lookup_ref

--lookup_ref Force overwrite the supplied reference allele with the sequence
stored in the Ensembl Core database or supplied FASTA file.
Not used by default

 --check_ref

--dont_skip Don't skip input variants that fail validation, e.g. those that fall
on unrecognised sequences.
Combining --check_ref with --dont_skip will add a CHECK_REF
output field when the given reference does not match the
underlying reference sequence.

CHECK_RE
F

--allow_non_variant When using VCF format as input and output, by default VEP will
skip non-variant lines of input (where the ALT allele is null).
Enabling this option the lines will be printed in the VCF output
with no consequence data added.

https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html

--chr [list] Select a subset of chromosomes to analyse from your file. Any
data not on this chromosome in the input will be skipped. The
list can be comma separated, with "-" characters representing
an interval.
For example, to include chromosomes 1, 2, 3, 10 and X you
could use --chr 1-3,10,X Not used by default

--coding_only Only return consequences that fall in the coding regions of
transcripts. Not used by default

 --
most_severe
--summary

--no_intergenic Do not include intergenic consequences in the output. Not used
by default

 --
most_severe
--summary

--pick Pick one line or block of consequence data per variant,
including transcript-specific columns.
Consequences are chosen according to the criteria described
here, and the order the criteria are applied may be customised
with --pick_order. This is the best method to use if you are
interested only in one consequence per variant. Not used by
default

 --
most_severe
--summary

--pick_allele Like --pick, but chooses one line or block of consequence data
per variant allele. Will only differ in behaviour from --pick when
the input variant has multiple alternate alleles. Not used by
default

 --
most_severe
--summary

--per_gene Output only the most severe consequence per gene. The
transcript selected is arbitrary if more than one has the same
predicted consequence. Uses the same ranking system as --
pick. Not used by default

--pick_allele_gene Like --pick_allele, but chooses one line or block of
consequence data per variant allele and gene combination. Not
used by default

--flag_pick As per --pick, but adds the PICK flag to the chosen block of
consequence data and retains others. Not used by default

PICK --
most_severe
--summary

--flag_pick_allele As per --pick_allele, but adds the PICK flag to the chosen block
of consequence data and retains others. Not used by default

PICK --
most_severe
--summary

--
flag_pick_allele_gen
e

 As per --pick_allele_gene, but adds the PICK flag to the chosen
block of consequence data and retains others. Not used by
default

PICK

--pick_order
[c1,c2,...,cN]

 Customise the order of criteria (and the list of criteria) applied
when choosing a block of annotation data with one of the
following options: --pick, --pick_allele, --per_gene, --
pick_allele_gene, --flag_pick, --flag_pick_allele, --
flag_pick_allele_gene. See this page for the default order.
Valid criteria are: mane_select, mane_plus_clinical, canonical,
appris, tsl, biotype, ccds, rank, length, ensembl, refseq. e.g.:

--pick --pick_order tsl,appris,rank

--most_severe Output only the most severe consequence per variant.
Transcript-specific columns will be left blank. Consequence
ranks are given in this table.
To include regulatory consequences, use the --regulatory
option in combination with this flag.
Not used by default

 --appris
--biotype
--canonical
--ccds
--coding_only
--domains
--flag_pick
--
flag_pick_all

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_chr
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#pick_options
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences

ele
--
no_intergenic
--numbers
--pick
--pick_allele
--polyphen
--protein
--sift
--summary
--symbol
--tsl
--uniprot
--xref_refseq
--mane
--
mane_select
--vcf

--summary Output only a comma-separated list of all observed
consequences per variant. Transcript-specific columns will be
left blank. Not used by default

 --appris
--biotype
--canonical
--ccds
--coding_only
--domains
--flag_pick
--
flag_pick_all
ele
--
most_severe
--
no_intergenic
--numbers
--pick
--pick_allele
--polyphen
--protein
--sift
--symbol
--tsl
--uniprot
--xref_refseq
--mane
--
mane_select
--vcf

--
flag_gencode_primary

 Flags transcripts as GENCODE primary using a boolean value.
Not used by default

GENCODE_
PRIMARY

--filter_common Shortcut flag for the filters below - this will exclude variants that
have a co-located existing variant with global AF > 0.01 (1%).
May be modified using any of the following freq_* filters. Not
used by default

FREQS

--check_frequency Turns on frequency filtering. Use this to include or exclude
variants based on the frequency of co-located existing variants
in the Ensembl Variation database. You must also specify all of
the --freq_* flags below. Frequencies used in filtering are added
to the output under the FREQS key in the Extra field. Not used
by default

FREQS

--freq_pop [pop] Name of the population to use in frequency filter. This must be
one of the following:

Name Description

1KG_ALL 1000 genomes combined population
(global)

1KG_AFR 1000 genomes combined African population

1KG_AMR 1000 genomes combined American
population

1KG_EAS 1000 genomes combined East Asian
population

1KG_EUR 1000 genomes combined European
population

1KG_SAS 1000 genomes combined South Asian
population

gnomADe gnomAD exomes combined population

gnomADe_AFR gnomAD exomes African/African American
population

gnomADe_AMR gnomAD exomes Latino population

gnomADe_ASJ gnomAD exomes Ashkenazi Jewish
population

gnomADe_EAS gnomAD exomes East Asian population

gnomADe_FIN gnomAD exomes Finnish population

gnomADe_NFE gnomAD exomes non-Finnish European
population

gnomADe_OTH gnomAD exomes other population

gnomADe_SAS gnomAD exomes South Asian population

gnomADg gnomAD genomes combined population

gnomADg_AFR gnomAD genomes African/African American
population

gnomADg_AMR gnomAD genomes Latino population

gnomADg_AMI gnomAD genomes Amish population

gnomADg_ASJ gnomAD genomes Ashkenazi Jewish
population

gnomADg_EAS gnomAD genomes East Asian population

gnomADg_FIN gnomAD genomes Finnish population

gnomADg_MID gnomAD genomes Mid-eastern population

gnomADg_NFE gnomAD genomes non-Finnish European
population

gnomADg_OTH gnomAD genomes other population

gnomADg_SAS gnomAD genomes South Asian population

--freq_freq [freq] Allele frequency to use for filtering. Must be a float value
between 0 and 1

--freq_gt_lt [gt|lt] Specify whether the frequency of the co-located variant must be
greater than (gt) or less than (lt) the value specified with --
freq_freq

--freq_filter
[exclude|include]

 Specify whether to exclude or include only variants that pass
the frequency filter

Database options

Flag Alternate Description Output
fields

Incompatible
with

--database Enable VEP to use local or remote databases. --af_1kg
--af_esp
--af_exac
--af_gnomad
--af_gnomade
--af_gnomadg
--cache
--max_af
--offline
--pubmed
--
var_synonyms

--host [hostname] Manually define the database host to connect to. Users in the US
may find connection and transfer speeds quicker using our East
coast mirror, useastdb.ensembl.org. Default =
"ensembldb.ensembl.org"

--user [username] -u Manually define the database username. Default = "anonymous"

--password
[password]

--pass Manually define the database password. Not used by default

--port [number] Manually define the database port. Default = 5306

--genomes Override the default connection settings with those for the
Ensembl Genomes public MySQL server. Required when using
any of the Ensembl Genomes species. Not used by default

--is_multispecies
[0|1]

 Some of the Ensembl Genomes databases (mainly bacteria and
protists) are composed of a collection of close species. It updates
the database connection settings (i.e. the database name) if the
value is set to 1. Default: 0

--lrg Map input variants to LRG coordinates (or to chromosome
coordinates if given in LRG coordinates), and provide
consequences on both LRG and chromosomal transcripts. Not
used by default

 --offline

--db_version
[number]

 Force VEP to connect to a specific version of the Ensembl
databases. Not recommended as there may be conflicts between
software and database versions. Not used by default

--registry
[filename]

 Defining a registry file overwrites other connection settings and
uses those found in the specified registry file to connect. Not used
by default

https://www.ensemblgenomes.org/
https://www.ensemblgenomes.org/

Variant Effect Predictor Annotation sources

VEP can use a variety of annotation sources to retrieve the transcript models used to predict consequence types.

Cache - a downloadable file containing all transcript models, regulatory features and variant data for a species

GFF or GTF - use transcript models defined in a tabix-indexed GFF or GTF file

Requires a FASTA file in --offline mode or if the desired species or assembly is not part of the Ensembl species list.

Database - connect to a MySQL database server hosting Ensembl databases

Data from VCF, BED and bigWig files can also be incorporated by VEP's Custom annotation feature.

Using a cache is the most efficient way to use VEP; we would encourage you to use a cache wherever
possible. Caches are easy to download and set up using the installer. Follow the tutorial for a simple
guide.

Caches

Using a cache (--cache) is the fastest and most efficient way to use VEP, as in most cases only a single initial network connection is
made and most data is read from local disk. Use offline mode to eliminate all network connections for speed and/or privacy.

Downloading caches

Ensembl creates cache files for every species for each Ensembl release. They can be automatically downloaded and configured using
INSTALL.pl.

If interested in RefSeq transcripts you may download an alternate cache file (e.g. homo_sapiens_refseq), or a merged file of RefSeq and
Ensembl transcripts (eg homo_sapiens_merged); remember to specify --refseq or --merged when running VEP to use the relevant
cache. See documentation for full details.

Manually downloading caches

It is also simple to download and set up caches without using the installer. By default, VEP searches for caches in $HOME/.vep; to use a
different directory when running VEP, use --dir_cache.

Indexed cache (https://ftp.ensembl.org/pub/release-114/variation/indexed_vep_cache/)

Essential for human and other species with large sets of variant data - requires Bio::DB::HTS (setup by INSTALL.pl) or tabix ,
e.g.:

cd $HOME/.vep
curl -O https://ftp.ensembl.org/pub/release-
114/variation/indexed_vep_cache/homo_sapiens_vep_114_GRCh38.tar.gz
tar xzf homo_sapiens_vep_114_GRCh38.tar.gz

 FTP directories with indexed VEP cache data:

Ensembl: Vertebrates

Ensembl Genomes: Bacteria | Fungi | Metazoa | Plants | Protists

NB: When using Ensembl Genomes caches, you should use the --cache_version option to specify the relevant Ensembl Genomes
version number as these differ from the concurrent Ensembl/VEP version numbers.

Pangenome and alternative assemblies

VEP caches are also available for Human Pangenome Reference Consortium (HPRC) data at the Ensembl HPRC data page . Click
here for more information on how to use VEP with HPRC data.

Data in the cache

https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/about/species.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_tutorial.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_merged
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_dir_cache
https://ftp.ensembl.org/pub/release-114/variation/indexed_vep_cache/
https://github.com/Ensembl/Bio-DB-HTS
https://github.com/samtools/tabix
https://ftp.ensembl.org/pub/current_variation/indexed_vep_cache/
https://ftp.ebi.ac.uk/ensemblgenomes/pub/bacteria/current/variation/indexed_vep_cache/
https://ftp.ebi.ac.uk/ensemblgenomes/pub/fungi/current/variation/indexed_vep_cache/
https://ftp.ebi.ac.uk/ensemblgenomes/pub/metazoa/current/variation/indexed_vep_cache/
https://ftp.ebi.ac.uk/ensemblgenomes/pub/plants/current/variation/indexed_vep_cache/
https://ftp.ebi.ac.uk/ensemblgenomes/pub/protists/current/variation/indexed_vep_cache/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache_version
https://projects.ensembl.org/hprc/
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#pangenomes

The data content of VEP caches vary by species. This table shows the contents of the default human cache files in release 114.

Source Version (GRCh38) Version (GRCh37)

Ensembl database version 114 114

Genome assembly GRCh38.p14 GRCh37.p13

MANE Version v1.4 n/a

GENCODE 48 19

RefSeq GCF_000001405.40-RS_2023_10
(GCF_000001405.40_GRCh38.p14_genomic.gff)

105.20220307
(GCF_000001405.25_GRCh37.p13_genomic.gff)

Regulatory build 1.0 1.0

PolyPhen 2.2.3 2.2.2

SIFT 6.2.1 5.2.2

dbSNP 156 156

COSMIC 100 98

HGMD-PUBLIC 2020.4 2020.4

ClinVar 2024-09 2023-06

1000 Genomes Phase 3 (remapped) Phase 3

gnomAD exomes v4.1 v4.1

gnomAD genomes v4.1 v4.1

Convert with tabix

If you have Bio::DB::HTS (as set up by INSTALL.pl) or tabix installed on your system, the speed of retrieving existing co-located
variants can be greatly improved by converting the cache files using the supplied script, convert_cache.pl. This replaces the plain-text,
chunked variant dumps with a single tabix-indexed file per chromosome. The script is simple to run:

perl convert_cache.pl -species [species] -version [vep_version]

To convert all species and all versions, use "all":

perl convert_cache.pl -species all -version all

A full description of the options can be seen using --help. When complete, VEP will automatically detect the converted cache and use
this in place.

Note that tabix and bgzip must be installed on your system to convert a cache. INSTALL.pl downloads these when setting up
Bio::DB::HTS; to enable convert_cache.pl to find them, run:

export PATH=${PATH}:${PWD}/htslib

Data privacy and offline mode

When using the public database servers, VEP requests transcript and variation data that overlap the loci in your input file. As such, these
coordinates are transmitted over the network to a public server, which may not be appropriate for the analysis of sensitive or private data.

To run VEP in an offline mode that does not use any network connections, use the flag --offline.

The limitations described above apply absolutely when using offline mode. For example, if you specify --offline and --format id, VEP will
report an error and refuse to run:

ERROR: Cannot use ID format in offline mode

All other features, including the ability to use custom annotations and plugins, are accessible in offline mode.

https://github.com/samtools/htslib
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_format
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html

aberrant_processed_transcript

CDS

C_gene_segment

D_gene_segment

exon

gene

J_gene_segment

lincRNA

lincRNA_gene

miRNA

miRNA_gene

processed_pseudogene

processed_transcript

pseudogene

pseudogenic_transcript

RNA

rRNA

rRNA_gene

snoRNA

snoRNA_gene

snRNA

snRNA_gene

GFF/GTF files

VEP can use transcript annotations defined in GFF or GTF files. The files must be bgzipped and indexed with tabix and a FASTA file
containing the genomic sequence is required in order to generate transcript models. This allows you to run VEP on data from any
species and assembly.

Your GFF or GTF file must be sorted in chromosomal order. VEP does not use header lines so it is safe to remove them.

grep -v "#" data.gff | sort -k1,1 -k4,4n -k5,5n -t$'\t' | bgzip -c > data.gff.gz
tabix -p gff data.gff.gz
./vep -i input.vcf --gff data.gff.gz --fasta genome.fa.gz

You may use any number of GFF/GTF files in this way, providing they refer to the same genome. You may also use them in concert with
annotations from a cache or database source; annotations are distinguished by the SOURCE field in the VEP output.

GFF file

Example of command line with GFF, using flag --gff :

./vep -i input.vcf --cache --gff data.gff.gz --fasta genome.fa.gz

NOTE: If you wish to customise the name of the GFF as it appears in the SOURCE field and VEP output header, use the longer --
custom annotation form:

--custom file=data.gff.gz,short_name=frequency,format=gff

GTF file

Example of command line with GTF, using flag --gtf :

./vep -i input.vcf --cache --gtf data.gtf.gz --fasta genome.fa.gz

NOTE: If you wish to customise the name of the GFF as it appears in the SOURCE field and VEP output header, use the longer --
custom annotation form:

--custom file=data.gtf.gz,short_name=frequency,format=gtf

GFF format expectations

VEP has been tested on GFF files generated by Ensembl and NCBI (RefSeq). Due to inconsistency in the GFF specification and
adherence to it, VEP may encounter problems parsing some GFF files. For the same reason, not all transcript biotypes defined in your
GFF may be supported by VEP. VEP does not support GFF files with embedded FASTA sequence.

Column "type" (3rd column):

The following entity/feature types are supported by VEP.

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://www.ensembl.org/info/website/upload/gff.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_options
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_options
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_gtf
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_options
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html#custom_options

mRNA

mt_gene

ncRNA

NMD_transcript_variant

primary_transcript

supercontig

transcript

tRNA

VD_gene_segment

V_gene_segment

Lines of other types will be ignored; if this leads to an incomplete transcript model, the whole transcript model may be discarded. If
unsupported types are used you will see a warning like the following -

WARNING: Ignoring 'five_prime_utr' feature_type from Homo_sapiens.GRCh38.111.gtf.gz GFF/GTF file.
This feature_type is not supported in VEP.

Expected parameters in the 9th column:

ID
Only required for the genes and transcripts entities.

parent/Parent
- Entities in the GFF are expected to be linked using a key named "parent" or "Parent" in the attributes (9th) column of the GFF.
- Unlinked entities (i.e. those with no parents or children) are discarded.
- Sibling entities (those that share the same parent) may have overlapping coordinates, e.g. for exon and CDS entities.

biotype
Transcripts require a Sequence Ontology biotype to be defined in order to be parsed by VEP.
The simplest way to define this is using an attribute named "biotype" on the transcript entity. Other configurations are supported in
order for VEP to be able to parse GFF files from NCBI and other sources.

Here is an example:

##gff-version 3.2.1
##sequence-region 1 1 10000
1 Ensembl gene 1000 5000 . + . ID=gene1;Name=GENE1
1 Ensembl transcript 1100 4900 . + . ID=transcript1;Name=GENE1-
001;Parent=gene1;biotype=protein_coding
1 Ensembl exon 1200 1300 . + . ID=exon1;Name=GENE1-001_1;Parent=transcript1
1 Ensembl exon 1500 3000 . + . ID=exon2;Name=GENE1-001_2;Parent=transcript1
1 Ensembl exon 3500 4000 . + . ID=exon3;Name=GENE1-001_2;Parent=transcript1
1 Ensembl CDS 1300 3800 . + . ID=cds1;Name=CDS0001;Parent=transcript1

GTF format expectations

The following GTF entity types will be extracted:

cds (or CDS)

stop_codon

exon

gene

transcript

Entities are linked by an attribute named for the parent entity type e.g. exon is linked to transcript by transcript_id, transcript is linked to
gene by gene_id.

Transcript biotypes are defined in attributes named "biotype", "transcript_biotype" or "transcript_type". If none of these exist, VEP will
attempt to interpret the source field (2nd column) of the GTF as the biotype.

Here is an example:

1 Ensembl gene 1000 5000 . + . gene_id "gene1"; gene_name "GENE1";
1 Ensembl transcript 1100 4900 . + . gene_id "gene1"; transcript_id "transcript1"; gene_name
"GENE1"; transcript_name "GENE1-001"; transcript_biotype "protein_coding";
1 Ensembl exon 1200 1300 . + . gene_id "gene1"; transcript_id "transcript1"; exon_number
"exon1"; exon_id "GENE1-001_1";
1 Ensembl exon 1500 3000 . + . gene_id "gene1"; transcript_id "transcript1"; exon_number

"exon2"; exon_id "GENE1-001_2";
1 Ensembl exon 3500 4000 . + . gene_id "gene1"; transcript_id "transcript1"; exon_number
"exon3"; exon_id "GENE1-001_2";
1 Ensembl CDS 1300 3800 . + . gene_id "gene1"; transcript_id "transcript1"; exon_number
"exon2"; ccds_id "CDS0001";

Chromosome synonyms

If the chromosome names used in your GFF/GTF differ from those used in the FASTA or your input VCF, you may see warnings like this
when running VEP:

WARNING: Chromosome 21 not found in annotation sources or synonyms on line 160

To circumvent this you may provide VEP with a synonyms file. A synonym file is included in VEP's cache files, so if you have one of
these for your species you can use it as follows:

./vep -i input.vcf -cache -gff data.gff.gz -fasta genome.fa.gz -synonyms
~/.vep/homo_sapiens/114_GRCh38/chr_synonyms.txt

FASTA files

By pointing VEP to a FASTA file (or directory containing several files), it is possible to retrieve reference sequence locally when using --
cache or --offline. This enables VEP to:

Retrieve HGVS notations (--hgvs)

Check the reference sequence given in input data (--check_ref)

Construct transcript models from a GFF or GTF file without accessing a database (specially useful for performance reasons or if
using data from species/assembly not part of Ensembl species list)

FASTA files from Ensembl can be set up using the installer; files set up using the installer are automatically detected by VEP when using
--cache or --offline; you should not need to use --fasta to manually specify them.

The following plugins do require the fasta file to be explicitly passed as a command line argument (i.e. --fasta
/VEP_DIR/your_downloaded.fasta)

CSN

GeneSplicer

MaxEntScan

To enable this, VEP uses one of two modules:

The Bio::DB::HTS Perl XS module with HTSlib. This module uses compiled C code and can access compressed (bgzipped) or
uncompressed FASTA files. It is set up by the VEP installer.

The Bio::DB::Fasta module. This may be used on systems where installation of the Bio::DB::HTS module has not been possible. It
can access only uncompressed FASTA files. It is also set up by the VEP installer and comes as part of the BioPerl package.

The first time you run VEP with a specific FASTA file, an index will be built. This can take a few minutes, depending on the size of the
FASTA file and the speed of your system. On subsequent runs the index does not need to be rebuilt (if the FASTA file has been modified,
VEP will force a rebuild of the index).

 FASTA FTP directories

Suitable reference FASTA files are available to download from the Ensembl FTP server. See the Downloads page for details.

You should preferably use the installer as described above to fetch these files; manual instructions are provided for reference. In most
cases it is best to download the single large "primary_assembly" file for your species. You should use the unmasked (without _rm or _sm
in the name) sequences.

Note that VEP requires that the file be either unzipped (Bio::DB::Fasta) or unzipped and then recompressed with bgzip
(Bio::DB::HTS::Faidx) to run; when unzipped these files can be very large (25GB for human). An example set of commands for

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_synonyms
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_ref
https://www.ensembl.org/info/about/species.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fasta
https://github.com/Ensembl/Bio-DB-HTS
http://www.htslib.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
http://search.cpan.org/~cjfields/BioPerl-1.6.924/Bio/DB/Fasta.pm
https://www.ensembl.org/info/data/ftp/index.html

setting up the data for human follows:

curl -O https://ftp.ensembl.org/pub/release-
114/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
gzip -d Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
bgzip Homo_sapiens.GRCh38.dna.primary_assembly.fa
./vep -i input.vcf --offline --hgvs --fasta Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz

Databases

VEP can use remote or local database servers to retrieve annotations.

Using --cache (without --offline) uses the local cache on disk to fetch most annotations, but allows database connections for some
features (see cache limitations)

Using --database tells VEP to retrieve all annotations from the database. Please only use this for small input files or when using
a local database server!

Public database servers

By default, VEP is configured to connect to the public Ensembl MySQL instance at ensembldb.ensembl.org. If you are in the USA (or
geographically closer to the east coast of the USA than to the Ensembl data centre in Cambridge, UK), a mirror server is available at
useastdb.ensembl.org. To use the mirror, use the flag --host useastdb.ensembl.org

Data for Ensembl Genomes species (e.g. plants, fungi, microbes) is available through a different public MySQL server. The appropriate
connection parameters can be automatically loaded by using the flag --genomes

If you have a very small data set (100s of variants), using the public database servers should provide adequate performance. If you have
larger data sets, or wish to use VEP in a batch manner, consider one of the alternatives below.

Using a local database

It is possible to set up a local MySQL mirror with the databases for your species of interest installed. For instructions on installing a local
mirror, see here. You will need a MySQL server that you can connect to from the machine where you will run VEP (this can be the same
machine). For most of the functionality of VEP, you will only need the Core database (e.g. homo_sapiens_core_114_38) installed. In
order to find co-located variants or to use SIFT or PolyPhen, it is also necessary to install the relevant variation database (e.g.
homo_sapiens_variation_114_38).

Note that unless you have custom data to insert in the database, in most cases it will be much more efficient to use a pre-built cache in
place of a local database.

To connect to your mirror, you can either set the connection parameters using --host, --port, --user and --password, or use a registry file.
Registry files contain all the connection parameters for your database, as well as any species aliases you wish to set up:

use Bio::EnsEMBL::DBSQL::DBAdaptor;
use Bio::EnsEMBL::Variation::DBSQL::DBAdaptor;
use Bio::EnsEMBL::Registry;

Bio::EnsEMBL::DBSQL::DBAdaptor->new(
 '-species' => "Homo_sapiens",
 '-group' => "core",
 '-port' => 5306,
 '-host' => 'ensembldb.ensembl.org',
 '-user' => 'anonymous',
 '-pass' => '',
 '-dbname' => 'homo_sapiens_core_114_38'
);

Bio::EnsEMBL::Variation::DBSQL::DBAdaptor->new(
 '-species' => "Homo_sapiens",
 '-group' => "variation",
 '-port' => 5306,
 '-host' => 'ensembldb.ensembl.org',
 '-user' => 'anonymous',
 '-pass' => '',
 '-dbname' => 'homo_sapiens_variation_114_38'

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_offline
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_database
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_host
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_genomes
https://www.ensembl.org/info/docs/webcode/mirror/install/ensembl-data.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_host
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_port
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_user
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_password

);

Bio::EnsEMBL::Registry->add_alias("Homo_sapiens","human");

For more information on the registry and registry files, see here.

Cache - technical information

ADVANCED The cache consists of compressed files containing listrefs of serialised objects. These objects are initially created from the
database as if using the Ensembl API normally. In order to reduce the size of the cache and allow the serialisation to occur, some
changes are made to the objects before they are dumped to disk. This means that they will not behave in exactly the same way as an
object retrieved from the database when writing, for example, a plugin that uses the cache.

The following hash keys are deleted from each transcript object:

analysis

created_date

dbentries : this contains the external references retrieved when calling $transcript->get_all_DBEntries(); hence this call on a cached
object will return no entries

description

display_xref

edits_enabled

external_db

external_display_name

external_name

external_status

is_current

modified_date

status

transcript_mapper : used to convert between genomic, cdna, cds and protein coordinates. A copy of this is cached separately by
VEP as

$transcript->{_variation_effect_feature_cache}->{mapper}

As mentioned above, a special hash key "_variation_effect_feature_cache" is created on the transcript object and used to cache things
used by VEP in predicting consequences, things which might otherwise have to be fetched from the database. Some of these are stored
in place of equivalent keys that are deleted as described above. The following keys and data are stored:

introns : listref of intron objects for the transcript. The adaptor, analysis, dbID, next, prev and seqname keys are stripped from each
intron object

translateable_seq : as returned by

$transcript->translateable_seq

mapper : transcript mapper as described above

peptide : the translated sequence as a string, as returned by

$transcript->translate->seq

protein_features : protein domains for the transcript's translation as returned by

$transcript->translation->get_all_ProteinFeatures

Each protein feature is stripped of all keys but: start, end, analysis, hseqname

codon_table : the codon table ID used to translate the transcript, as returned by

https://www.ensembl.org/info/docs/api/registry.html

$transcript->slice->get_all_Attributes('codon_table')->[0]

protein_function_predictions : a hashref containing the keys "sift" and "polyphen"; each one contains a protein function prediction
matrix as returned by e.g.

$protein_function_prediction_matrix_adaptor->fetch_by_analysis_translation_md5('sift',
md5_hex($transcript-{_variation_effect_feature_cache}->{peptide}))

Similarly, some further data is cached directly on the transcript object under the following keys:

_gene : gene object. This object has all keys but the following deleted: start, end, strand, stable_id

_gene_symbol : the gene symbol

_ccds : the CCDS identifier for the transcript

_refseq : the "NM" RefSeq mRNA identifier for the transcript

_protein : the Ensembl stable identifier of the translation

_source_cache : the source of the transcript object. Only defined in the merged cache (values: Ensembl, RefSeq) or when using a
GFF/GTF file (value: short name or filename)

Variant Effect Predictor Filtering results

The VEP package includes a tool, filter_vep, to filter results files on a variety of attributes.

It operates on standard, tab-delimited or VCF formatted output (NB only VCF output produced by VEP or in the same format can be
used).

Running filter_vep

Run as follows:

./vep -i in.vcf -o out.txt -cache -everything

./filter_vep -i out.txt -o out_filtered.txt -filter "[filter_text]"

filter_vep can also read from STDIN and write to STDOUT, and so may be used in a UNIX pipe:

./vep -i in.vcf -o stdout -cache -check_existing | ./filter_vep -filter "not Existing_variation" -
o out.txt

The above command removes known variants from the output

Options

Flag Alternate Description
--
help

-h Print usage message and exit

--
input
_file
[file
]

-i Specify the input file (i.e. the VEP results file). If no input file is specified,
filter_vep will attempt to read from STDIN. Input may be gzipped - to read a
gzipped file use --gz

--
forma
t
[form
at]

 Specify input file format:

tab (i.e. the VEP results file)

vcf

--
outpu
t_fil
e
[file
]

-o Specify the output file to write to. If no output file is specified, the filter_vep will
write to STDOUT

--
force
_over
write

 Force an output file of the same name to be overwritten

--
filte
r
[filt
ers]

-f Add filter (see below). Multiple --filter flags may be used, and are treated
as logical ANDs, i.e. all filters must pass for a line to be printed

--
soft_
filte
r

Variants not passing given filters will be flagged in the FILTER column of the
VCF file, and will not be removed from output.

--
list

-l List allowed fields from the input file

--
count

-c Print only a count of matched lines

--
only_
match
ed

 In VCF files, the CSQ field that contains the consequence data will often contain
more than one "block" of consequence data, where each block corresponds to a
variant/feature overlap. Using --only_matched will remove blocks that do not
pass the filters. By default, filter_vep prints out the entire VCF line if any of the
blocks pass the filters.

--
vcf_i
nfo_f
ield
[key]

 With VCF input files, by default filter_vep expects to find VEP annotations
encoded in the CSQ INFO key; VEP itself can be configured to write to a
different key (with the equivalent --vcf_info_field flag).

Use this flag to change the INFO key VEP expects to decode:
e.g. use the command "--vcf_info_field ANN" if the VEP annotations are
stored in the INFO key "ANN".

--
ontol
ogy

-y Use Sequence Ontology to match consequence terms. Use with operator "is"
to match against all child terms of your value. e.g. "Consequence is
coding_sequence_variant" will match missense_variant, synonymous_variant
etc. Requires database connection; defaults to connecting to
ensembldb.ensembl.org. Use --host, --port, --user, --password, --
version as per vep to change connection parameters.

Writing filters

Filter strings consist of three components that must be separated by whitespace:

1. Field : A field name from the VEP results file. This can be any field in the "main" columns of the output, or any in the "Extra" final
column. For VCF files, this is any field defined in the "##INFO=<ID=CSQ" header. You can list available fields using --list. Field
names are not case sensitive, and you may use the first few characters of a field name if they resolve uniquely to one field name.

2. Operator : The operator defines the comparison carried out.

3. Value : The value to which the content of the field is compared. May be prefixed with "#" to represent the value of another field.

Examples:

match entries where Feature (Transcript) is "ENST00000307301"
--filter "Feature is ENST00000307301"

match entries where Protein_position is less than 10
--filter "Protein_position < 10"

match entries where Consequence contains "stream" (this will match upstream and downstream)
--filter "Consequence matches stream"

For certain fields you may only be interested in whether a value exists for that field; in this case the operator and value can be left out:

filter for MANE transcripts
--filter "MANE"

match entries where the gene symbol is defined
--filter "SYMBOL"

The value component may be another field; to represent this, prefix the name of the field to be used as a value with "#":

match entries where AFR_AF is greater than EUR_AF

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_vcf_info_field
http://www.sequenceontology.org/

--filter "AFR_AF > #EUR_AF"

Filter strings can be linked together by the logical operators "or" and "and", and inverted by prefixing with "not":

filter for missense variants in CCDS transcripts where the variant falls in a protein domain
--filter "Consequence is missense_variant and CCDS and DOMAINS"

find variants where the allele frequency is greater than 10% in either AFR or EUR populations
--filter "AFR_AF > 0.1 or EUR_AF > 0.1"

filter out known variants
--filter "not Existing_variation"

Filter logic may be constrained using parentheses, to any arbitrary level:

find variants with AF > 0.1 in AFR or EUR but not EAS or SAS
--filter "(AFR_AF > 0.1 or EUR_AF > 0.1) and (EAS_AF < 0.1 and SAS_AF < 0.1)"

For fields that contain string and number components, filter_vep will try and match the relevant part based on the operator in use. For
example, using --sift b in VEP gives strings that look like "tolerated(0.46)". This will give a match to either of the following filters:

match string part
--filter "SIFT is tolerated"

match number part
--filter "SIFT < 0.5"

Note that for numeric fields, such as the *AF allele frequency fields, filter_vep does not consider the absence of a value for that field as
equivalent to a 0 value. For example, if you wish to find rare variants by finding those where the allele frequency is less than 1% or
absent, you should use the following:

--filter "AF < 0.01 or not AF"

For the Consequence field it is possible to use the Sequence Ontology to match terms ontologically; for example, to match all coding
consequences (e.g. missense_variant, synonymous_variant):

--ontology --filter "Consequence is coding_sequence_variant"

Operators

is (synonyms: = , eq) : Match exactly

get only transcript consequences
--filter "Feature_type is Transcript"

!= (synonym: ne) : Does not match exactly

filter out tolerated SIFT predictions
--filter "SIFT != tolerated"

match (synonyms: matches , re , regex) : Match string using regular expression. You may include any regular expression notation,
e.g. "\d" for any numerical character

match stop_gained, stop_lost and stop_retained
--filter "Consequence match stop"

< (synonym: lt) : Less than. Note an absent value is not considered to be equivalent to 0.

find SIFT scores less than 0.1
--filter "SIFT < 0.1"

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_sift
http://www.sequenceontology.org/

> (synonym: gt) : Greater than

find variants not in the first exon
--filter "Exon > 1"

<= (synonym: lte) : Less than or equal to. Note an absent value is not considered to be equivalent to 0.

>= (synonym: gte) : Greater than or equal to

exists (synonyms: ex , defined) : Field is defined - equivalent to using no operator and value

in : Find in list or file. Value may be either a comma-separated list or a file containing values on separate lines. Each list item is
compared using the "is" operator.

find variants in a list of gene names
--filter "SYMBOL in BRCA1,BRCA2"

filter using a file of MotifFeatures
--filter "Feature in /data/files/motifs_list.txt"

Variant Effect Predictor Custom annotations

VEP can integrate custom annotation from standard format files into your results by using the --custom flag.

These files may be hosted locally or remotely, with no limit to the number or size of the files. The files must be indexed using the tabix
utility (BED, GFF, GTF, VCF); bigWig files contain their own indices.

Annotations typically appear as key=value pairs in the Extra column of the VEP output; they will also appear in the INFO column if using
VCF format output. The value for a particular annotation is defined as the identifier for each feature; if not available, an identifier derived
from the coordinates of the annotation is used. Annotations will appear in each line of output for the variant where multiple lines exist.

Data formats

VEP supports the following annotation formats:

Format Type Description Notes

GFF
GTF

Gene/transcript
annotations

Formats to describe genes and other
genomic features — format specifications:
GFF3 and GTF

Requires a FASTA file in offline mode or if the desired
species or assembly is not part of the Ensembl species
list.

VCF Variant data A format used to describe genomic variants VEP uses the 3rd column as the identifier. INFO and
FILTER fields from records may be added to the VEP
output.

BED Basic/uninterpreted
data

A simple tab-delimited format containing 3-
12 columns of data. The first 3 columns
contain the coordinates of the feature.

VEP uses the 4th column (if available) as the feature
identifier.

bigWig Basic/uninterpreted
data

A format for storage of dense continuous
data.

VEP uses the value for the given position as the
identifier. BigWig files contain their own indices, and do
not need to be indexed by tabix. Requires
Bio::DB::BigFile.

Any other files can be easily converted to be compatible with VEP; the easiest format to produce is a BED-like file containing coordinates
and an (optional) identifier:

chr1 10000 11000 Feature1
chr3 25000 26000 Feature2
chrX 99000 99001 Feature3

Chromosomes can be denoted by either e.g. "chr7" or "7", "chrX" or "X".

Preparing files

Custom annotation files must be prepared in a particular way in order to work with tabix and therefore with VEP. Files must be stripped of
comment lines, sorted in chromosome and position order, compressed using bgzip and finally indexed using tabix. Here are some
examples of that process for:

GFF file

grep -v "#" myData.gff | sort -k1,1 -k4,4n -k5,5n -t$'\t' | bgzip -c > myData.gff.gz
tabix -p gff myData.gff.gz

BED file

grep -v "#" myData.bed | sort -k1,1 -k2,2n -k3,3n -t$'\t' | bgzip -c > myData.bed.gz
tabix -p bed myData.bed.gz

The tabix utility has several preset filetypes that it can process, and it can also process any arbitrary filetype containing at least a
chromosome and position column. See the documentation for details.

If you are going to use the file remotely (i.e. over HTTP or FTP protocol), you should ensure the file is world-readable on your server.

Options

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_custom
http://samtools.sourceforge.net/tabix.shtml
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://www.ensembl.org/info/website/upload/gff.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/about/species.html
https://www.ensembl.org/info/about/species.html
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
https://www.ensembl.org/info/website/upload/bed.html
http://genome.ucsc.edu/goldenPath/help/bigWig.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#bigfile
http://samtools.sourceforge.net/tabix.shtml

"bed", "gff", "gtf", "vcf" or "bigwig"

"exact" or "overlap" (if left blank, assumed to be overlap)

"0" or "1" (if left blank, assumed to be 0)

Each custom file that you configure VEP to use can be configured. Beyond the filepath, there are further options, each of which is
specified in a comma-separated list, like this:

./vep [...] --custom
Filename,Short_name,File_type,Annotation_type,Force_report_coordinates,VCF_fields

The options are as follows:

Filename :
The path to the file. For tabix indexed files, the VEP will check that both the file and the corresponding .tbi file exist. For remote files,
VEP will check that the tabix index is accessible on startup.

Short name :
A name for the annotation that will appear as the key in the key=value pairs in the results.
If not defined, this will default to the annotation filename for the first set of annotation added (e.g. "myPhenotypes.bed.gz" in the
second example below if the short name was missing).

File type :

Annotation type :

When using "exact" only annotations whose coordinates match exactly those of the variant will be reported. This would be suitable
for position specific information such as conservation scores, allele frequencies or phenotype information. Using "overlap", any
annotation that overlaps the variant by even 1bp will be reported.

Force report coordinates :

If set to "1", this forces VEP to output the coordinates of an overlapping custom feature instead of any found identifier (or value in
the case of bigWig) field. If set to "0" (the default), VEP will output the identifier field if one is found; if none is found, then the
coordinates are used instead.

VCF fields :
You can specify any info type (e.g. "AC") present in the INFO field of the custom input VCF or specify "FILTER" for the FILTER field,
to add these as custom annotations:

If using "exact" annotation type, allele-specific annotation will be retrieved.

The INFO field name will be prefixed with the short name, e.g. using short name "test", the INFO field "foo" will appear as
"test_FOO" in the VEP output. Similarly FILTER field will appear as "test_FILTER".

In VCF files the custom annotations are added to the CSQ INFO field.

Alleles in the input and VCF entry are trimmed in both directions in an attempt to match complex or poorly formatted entries.

For example:

 # BigWig file
 ./vep [...] --custom frequencies.bw,Frequency,bigwig,exact,0
 # BED file
 ./vep [...] --custom http://www.myserver.com/data/myPhenotypes.bed.gz,Phenotype,bed,exact,1
 # VCF file
 ./vep [...] --custom
https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh37/variation_genotype/TOPMED_GRCh37.vcf.gz
,,vcf,exact,0,TOPMED

 # For multiple custom files, use:
 ./vep [...] --custom clinvar.vcf.gz,ClinVar,vcf,exact,0,CLNSIG,CLNREVSTAT,CLNDN \
 --custom TOPMED_GRCh38_20180418.vcf.gz,topmed_20180418,vcf,exact,0,TOPMED \
 --custom UK10K_COHORT.20160215.sites.GRCh38.vcf.gz,uk10k,vcf,exact,0,AF_ALSPAC

Using positional options in --custom with VEP 109 and earlier (compatible with VEP 114)

Since VEP 110, you can configure each custom file using a comma-separated list of key-value pairs:

./vep [...] --custom
file=Filename,short_name=Short_name,format=File_type,type=Annotation_type,fields=VCF_fields

The order of the options is irrelevant and most options have sensible defaults as described below:

Option Accepted values Description
file String with valid path to file (Required) Filename: The path to the file. For Tabix indexed files, VEP will check if both the

file and the corresponding index (.tbi) exist. For remote files, VEP will check that the tabix
index is accessible on startup.

format bed, gff, gtf, vcf or
bigwig

(Required) File format of file.

short_na
me

Annotation filename
(default) or any string
without commas

Short name: A name for the annotation that will appear as the key in the key=value pairs in
the results. If not defined, this will default to the annotation filename.

fields VCF fields: Percentage (%) separated list of INFO fields to print (such as AC) present in the
custom input VCF or specify FILTER for the FILTER field, to add these as custom
annotations:

If using exact annotation type, allele-specific annotation will be retrieved.

The INFO field name will be prefixed with the short name, e.g. using short name test,
the INFO field foo will appear as test_FOO in the VEP output. Similarly FILTER field
will appear as test_FILTER.

In VCF files the custom annotations are added to the CSQ INFO field.

Alleles in the input and VCF entry are trimmed in both directions in an attempt to match
complex or poorly formatted entries.

type overlap (default),
within, surrounding or
exact

Annotation type:

overlap: reports any annotation that overlaps the variant by even 1 base pair.

within (*): only reports annotations within the variant.

surrounding (*): only reports annotations that completely surround the variant.

exact: only reports annotations whose coordinates match exactly those of the variant.
This is suitable for position-specific information such as conservation scores, allele
frequencies or phenotype information.

overlap_
cutoff

From 0 (default) to 100 Minimum percentage overlap (*) between annotation and variant. See also reciprocal.

reciproc
al

0 (default) or 1 Mode of calculating the overlap percentage (*):

0: percentage of annotation covered by variant

1: percentage of variant covered by annotation

distance 0 or a positive integer
(disabled by default)

Distance (in base pairs) to the ends of the overlapping feature (*).

coords 0 (default) or 1 Force report coordinates:

0: outputs the identifier field (or value in the case of bigWig) if available; otherwise,
outputs coordinates instead.

1: always outputs the coordinates of an overlapping custom feature.

same_typ
e

0 (default) or 1 Only match identical variant classes (*). For instance, only match deletions with deletions.
This is only available for VCF annotations.

Using key-value pairs in --custom with VEP 114

num_reco
rds

50 (default), all, 0 or any
positive integer

Number of matching records to display. Any remaining records are represented with
ellipsis (...). Use num_records = all to display all matching records and num_records
= 0 to only display ... if there are matching records.

summary_
stats

none (default), min, mean,
max, count or sum

Summary statistics to display. A percentage-separated list may be used to calculate
multiple summary statistics, such as min%mean%max%count%sum.

When format = vcf, the features marked with (*) only work on structural variants.

Examples:

BigWig file
./vep [...] --custom file=frequencies.bw,short_name=Frequency,format=bigwig,type=exact,coords=0
BED file
./vep [...] --custom
file=http://www.myserver.com/data/myPhenotypes.bed.gz,short_name=Phenotype,format=bed,type=exact,c
oords=1
VCF file
./vep [...] --custom
file=https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh37/variation_genotype/TOPMED_GRCh37.v
cf.gz,format=vcf,type=exact,coords=0,fields=TOPMED
./vep [...] --custom
file=gnomad_v2.1_sv.sites.vcf.gz,short_name=gnomad,fields=PC%EVIDENCE%SVTYPE,format=vcf,type=withi
n,reciprocal=1,overlap_cutoff=80

For multiple custom files, use:
./vep [...] --custom
file=clinvar.vcf.gz,short_name=ClinVar,format=vcf,type=exact,coords=0,fields=CLNSIG%CLNREVSTAT%CLN
DN \
 --custom
file=TOPMED_GRCh38_20180418.vcf.gz,short_name=topmed_20180418,format=vcf,type=exact,coords=0,field
s=TOPMED \
 --custom
file=UK10K_COHORT.20160215.sites.GRCh38.vcf.gz,short_name=uk10k,format=vcf,type=exact,coords=0,fie
lds=AF_ALSPAC

Example - ClinVar

We include the most recent public variant and phenotype data available in each Ensembl release, but some projects release data more
frequently than we do.
If you want to have the very latest annotations, you can use the data files from your prefered projects (in any format listed in Data
formats) and use them as a VEP custom annotation.

For instance, you can annotate you variants with VEP, using the the latest ClinVar data as custom annotation.
ClinVar provides VCF files on their FTP site: GRCh37 and GRCh38 .

See below an example about how to use ClinVar VCF files as a VEP custom annotation:

1. Download the VCF files (you need the compressed VCF file and the index file), e.g.:

Compressed VCF file
curl -O https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz
Index file
curl -O https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz.tbi

2. Example of command you can use:

./vep [...] --custom
file=clinvar.vcf.gz,short_name=ClinVar,format=vcf,type=exact,coords=0,fields=CLNSIG%CLNREVSTAT%
CLNDN

Where the selected ClinVar INFO fields (from the ClinVar VCF file) are:
- CLNSIG: Clinical significance for this single variant
- CLNREVSTAT: ClinVar review status for the Variation ID
- CLNDN: ClinVar's preferred disease name for the concept specified by disease
identifiers in CLNDISDB

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/

Of course you can select the INFO fields you want in the ClinVar VCF file

Quick example on GRCh38:
./vep --id "1 230710048 230710048 A/G 1" --species homo_sapiens -o /path/to/output/output.txt
--cache --offline --assembly GRCh38 --custom
file=/path/to/custom_files/clinvar.vcf.gz,short_name=ClinVar,format=vcf,type=exact,coords=0,fie
lds=CLNSIG%CLNREVSTAT%CLNDN

Column descriptions:
Uploaded_variation : Identifier of uploaded variant
Location : Location of variant in standard coordinate format (chr:start or chr:start-end)
Allele : The variant allele used to calculate the consequence
Gene : Stable ID of affected gene
Feature : Stable ID of feature
Feature_type : Type of feature - Transcript, RegulatoryFeature or MotifFeature
Consequence : Consequence type
cDNA_position : Relative position of base pair in cDNA sequence
CDS_position : Relative position of base pair in coding sequence
Protein_position : Relative position of amino acid in protein
Amino_acids : Reference and variant amino acids
Codons : Reference and variant codon sequence
Existing_variation : Identifier(s) of co-located known variants
Extra column keys:
IMPACT : Subjective impact classification of consequence type
DISTANCE : Shortest distance from variant to transcript
STRAND : Strand of the feature (1/-1)
FLAGS : Transcript quality flags
SOURCE : Source of transcript
ClinVar : /opt/vep/.vep/custom/clinvar.vcf.gz (exact)
ClinVar_CLNSIG : CLNSIG field from /path/to/custom_files/clinvar.vcf.gz
ClinVar_CLNREVSTAT : CLNREVSTAT field from /path/to/custom_files/clinvar.vcf.gz
ClinVar_CLNDN : CLNDN field from /path/to/custom_files/clinvar.vcf.gz
#Uploaded_variation Location Allele Gene Feature Feature_type
Consequence ... Extra
1_230710048_A/G 1:230710048 G ENSG00000135744 ENST00000366667 Transcript
missense_variant ...
IMPACT=MODERATE;STRAND=-1;ClinVar=18068;ClinVar_CLNDN=Hypertension,_essential,_susceptibility_t
o|Preeclampsia,_susceptibility_to|Renal_dysplasia|Susceptibility_to_progression_to_renal_failur
e_in_IgA_nephropathy|not_specified;ClinVar_CLNREVSTAT=criteria_provided,_multiple_submitters,_n
o_conflicts;ClinVar_CLNSIG=Benign;ClinVar_FILTER=.
1_230710048_A/G 1:230710048 G ENSG00000244137 ENST00000412344 Transcript
downstream_gene_variant ...
IMPACT=MODIFIER;DISTANCE=650;STRAND=-1;ClinVar=18068;ClinVar_CLNDN=Hypertension,_essential,_sus
ceptibility_to|Preeclampsia,_susceptibility_to|Renal_dysplasia|Susceptibility_to_progression_to
_renal_failure_in_IgA_nephropathy|not_specified;ClinVar_CLNREVSTAT=criteria_provided,_multiple_
submitters,_no_conflicts;ClinVar_CLNSIG=Benign;ClinVar_FILTER=.

##fileformat=VCFv4.1
##INFO=<ID=CSQ,Number=.,Type=String,Description="Consequence annotations from Ensembl VEP.
Format:
Allele|Consequence|IMPACT|SYMBOL|Gene|Feature_type|Feature|BIOTYPE|EXON|INTRON|HGVSc|HGVSp|cDNA
_position|CDS_position|Protein_position|Amino_acids|Codons|Existing_variation|DISTANCE|STRAND|F
LAGS|SYMBOL_SOURCE|HGNC_ID|SOURCE|ClinVar|ClinVar_CLNSIG|ClinVar_CLNREVSTAT|ClinVar_CLNDN">
##INFO=<ID=ClinVar,Number=.,Type=String,Description="/path/to/custom_files/clinvar.vcf.gz
(exact)">
##INFO=<ID=ClinVar_CLNSIG,Number=.,Type=String,Description="CLNSIG field from
/path/to/custom_files/clinvar.vcf.gz">
##INFO=<ID=ClinVar_CLNREVSTAT,Number=.,Type=String,Description="CLNREVSTAT field from
/path/to/custom_files/clinvar.vcf.gz">
##INFO=<ID=ClinVar_CLNDN,Number=.,Type=String,Description="CLNDN field from
/path/to/custom_files/clinvar.vcf.gz">
#CHROM POS ID REF ALT QUAL FILTER INFO
1 230710048 1_230710048_A/G A G . .
CSQ=G|missense_variant|MODERATE|AGT|ENSG00000135744|Transcript|ENST00000366667|protein_coding|2

Results in the default VEP format

Results in VCF (adding the tag --vcf in the command line)

/5||||1018|803|268|M/T|aTg/aCg|||-1||HGNC|HGNC:333||18068|Benign|criteria_provided&_multiple_su
bmitters&_no_conflicts|Hypertension&_essential&_susceptibility_to&Preeclampsia&_susceptibility_
to&Renal_dysplasia&Susceptibility_to_progression_to_renal_failure_in_IgA_nephropathy¬_specified
,G|downstream_gene_variant|MODIFIER|AL512328.1|ENSG00000244137|Transcript|ENST00000412344|antis
ense|||||||||||650|-1||Clone_based_ensembl_gene|||18068|Benign|criteria_provided&_multiple_subm
itters&_no_conflicts|Hypertension&_essential&_susceptibility_to&Preeclampsia&_susceptibility_to
&Renal_dysplasia&Susceptibility_to_progression_to_renal_failure_in_IgA_nephropathy¬_specifie
d

Using remote files

The tabix utility makes it possible to read annotation files from remote locations, for example over HTTP or FTP protocols.

In order to do this, the .tbi index file is downloaded locally (to the current working directory) when VEP is run. From this point on, only the
portions of data requested by VEP (i.e. those overlapping the variants in your input file) are downloaded.

bigWig files can also be used remotely in the same way as tabix-indexed files, although less stringent checks are carried out on VEP
startup.

Example - phyloP and phastCons conservation scores

The UCSC Genome Browser provides multiple alignment files with phyloP and phastCons conservation scores for different genomes
in the BigWig (.bw) format.

These files can be remotely used as VEP custom annotations by simply pointing to their URL. For instance, to include phyloP or
phastCons 100 way conservation scores found in the Downloads section of the UCSC Genome Browser, you can use commands such
as:

Human GRCh38/hg38 phyloP100way scores
./vep [...] --custom
file=http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP100way/hg38.phyloP100way.bw,short_name=p
hyloP100way,format=bigwig

Human GRCh38/hg38 phastCons100way scores
./vep [...] --custom
file=http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons100way/hg38.phastCons100way.bw,short_
name=phastCons100way,format=bigwig

https://genome.ucsc.edu/
https://hgdownload.soe.ucsc.edu/downloads

Pathogenicity
predictions

Variant Effect Predictor Plugins

VEP can use plugin modules written in Perl to extend, filter and manipulate the VEP output.

To use plugins with VEP, you can:

Install them using VEP's installer script. You can quickly check installed plugins by running:

perl INSTALL.pl -a p -g list

Use Ensembl VEP in Docker and Singularity. VEP plugins and their dependencies are available in the Docker image.

Use the VEP web and REST interfaces. Not all plugins are available therein and they may have limited options.

Existing plugins

We have written several plugins that implement experimental functionalities that we do not (yet) include in the variation API, and these
are stored in a public github repository:

https://github.com/Ensembl/VEP_plugins

Here is the list of the VEP plugins available:

Select categories: All categories

Plugin Description Category External
libraries

Developer

AlphaMissens
e

This plugin for the Ensembl Variant Effect Predictor (VEP)
annotates missense variants with the pre-computed AlphaMissense
pathogenicity scores. AlphaMissense is a deep learning model
developed by Google DeepMind that predicts the pathogenicity of
single nucleotide missense variants.

This plugin will add two annotations per missense variant:

am_pathogenicity, a continuous score between 0 and 1
which can be interpreted as the predicted probability of the
variant being pathogenic.

am_class is the classification of the variant into one of three
discrete categories: likely_pathogenic,
likely_benign, or ambiguous. These are derived using the
following thresholds of am_pathogenicity: likely_benign
if am_pathogenicity < 0.34; likely_pathogenic if
am_pathogenicity > 0.564; ambiguous otherwise.

These thresholds were chosen to achieve 90% precision for both
pathogenic and benign ClinVar variants. Note that AlphaMissense
was not trained on ClinVar variants. Variants labeled as ambiguous
should be treated as unknown or uncertain according to
AlphaMissense.

This plugin is available for both GRCh37 (hg19) and GRCh38
(hg38) genome builds.

The prediction scores of AlphaMissense can be downloaded from
https://console.cloud.google.com/storage/browser/dm_alphamissen
se (AlphaMissense Database Copyright (2023) DeepMind
Technologies Limited). Data contained within the AlphaMissense
Database is licensed under the Creative Commons Attribution 4.0
International License (CC-BY) (the “License”). You may obtain a
copy of the License at:
https://creativecommons.org/licenses/by/4.0/legalcode. Use of the
AlphaMissense Database is subject to Google Cloud Platform
Terms of Service

Please cite the AlphaMissense publication alongside the VEP if you
use this resource: https://doi.org/10.1126/science.adg7492

- Ensembl

https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#docker
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#singularity
https://hub.docker.com/r/ensemblorg/ensembl-vep
https://www.ensembl.org/Tools/VEP
https://rest.ensembl.org/#VEP
http://github.com/Ensembl/VEP_plugins
https://github.com/Ensembl/VEP_plugins/blob/release/114/AlphaMissense.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/AlphaMissense.pm
https://console.cloud.google.com/storage/browser/dm_alphamissense
https://console.cloud.google.com/storage/browser/dm_alphamissense
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1126/science.adg7492

Conservation

Plugin Description Category External
libraries

Developer

Disclaimer: The AlphaMissense Database and other information
provided on or linked to this site is for theoretical modelling only,
caution should be exercised in use. It is provided "as-is" without any
warranty of any kind, whether express or implied. For clarity, no
warranty is given that use of the information shall not infringe the
rights of any third party (and this disclaimer takes precedence over
any contrary provisions in the Google Cloud Platform Terms of
Service). The information provided is not intended to be a substitute
for professional medical advice, diagnosis, or treatment, and does
not constitute medical or other professional advice.

Before running the plugin for the first time, you need to create a
tabix index (requires tabix to be installed).

tabix -s 1 -b 2 -e 2 -f -S 1
AlphaMissense_hg38.tsv.gz

tabix -s 1 -b 2 -e 2 -f -S 1
AlphaMissense_hg19.tsv.gz

Options are passed to the plugin as key=value pairs:

Argum
ent

Description

file (mandatory) Tabix-indexed AlphaMissense data

cols (optional) Colon-separated columns to print from
AlphaMissense data; if set to all, all columns are
printed (default:
Missense_pathogenicity:Missense_class)

transc
ript_m
atch

Only print data if transcript identifiers match those from
AlphaMissense data (default: 0)

AlphaMissense predictions are matched to input data by genomic
location and protein change by default.

Usage examples:

mv AlphaMissense.pm ~/.vep/Plugins

print AlphaMissense scores and predictions
(default)
./vep -i variations.vcf --plugin
AlphaMissense,file=/full/path/to/file.tsv.gz

print all AlphaMissense information
./vep -i variations.vcf --plugin
AlphaMissense,file=/full/path/to/file.tsv.gz,co
ls=all

only report results for the transcripts in
the AlphaMissense prediction
./vep -i variations.vcf --plugin
AlphaMissense,file=/full/path/to/file.tsv.gz,tr
anscript_match=1

AncestralAllel
e

A VEP plugin that retrieves ancestral allele sequences from a
FASTA file.

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/AncestralAllele.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/AncestralAllele.pm

Phenotype
data and
citations

Plugin Description Category External
libraries

Developer

Ensembl produces FASTA file dumps of the ancestral sequences of
key species.

Data files for GRCh37: https://ftp.ensembl.org/pub/release-
75/fasta/ancestral_alleles/

Data files for GRCh38:
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/

For optimal retrieval speed, you should pre-process the FASTA files
into a single bgzipped file that can be accessed via
Bio::DB::HTS::Faidx (installed by VEP's INSTALL.pl):

wget
https://ftp.ensembl.org/pub/current_fasta/ances
tral_alleles/homo_sapiens_ancestor_GRCh38.tar.g
z
tar xfz homo_sapiens_ancestor_GRCh38.tar.gz
cat homo_sapiens_ancestor_GRCh38/*.fa | bgzip -
c > homo_sapiens_ancestor_GRCh38.fa.gz
rm -rf homo_sapiens_ancestor_GRCh38/
homo_sapiens_ancestor_GRCh38.tar.gz
./vep -i variations.vcf --plugin
AncestralAllele,homo_sapiens_ancestor_GRCh38.fa
.gz

The plugin is also compatible with Bio::DB::Fasta and an
uncompressed FASTA file.

Note the first time you run the plugin with a newly generated FASTA
file it will spend some time indexing the file. DO NOT INTERRUPT
THIS PROCESS, particularly if you do not have Bio::DB::HTS
installed.

Special cases:

- represents an insertion

? indicates the chromosome could not be looked up in the
FASTA

Usage examples:

mv AncestralAllele.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
AncestralAllele,homo_sapiens_ancestor_GRCh38.fa
.gz

AVADA Automatic VAriant evidence DAtabase is a novel machine learning
tool that uses natural language processing to automatically identify
pathogenic genetic variant evidence in full-text primary literature
about monogenic disease and convert it to genomic coordinates.

Please cite the AVADA publication alongside the VEP if you use this
resource: https://pubmed.ncbi.nlm.nih.gov/31467448/

NB: The plugin currently does not annotate for
downstream_gene_variant and upstream_gene_variant.

Pre-requisites

1. AVADA data is available for GRCh37 and can be downloaded
from:
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz

wget
http://bejerano.stanford.edu/AVADA/avada_v1.00_

List::MoreUtil
s qw(uniq)

Ensembl

https://ftp.ensembl.org/pub/release-75/fasta/ancestral_alleles/
https://ftp.ensembl.org/pub/release-75/fasta/ancestral_alleles/
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://github.com/Ensembl/VEP_plugins/blob/release/114/AVADA.pm
https://pubmed.ncbi.nlm.nih.gov/31467448/
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
https://metacpan.org/pod/List::MoreUtils
https://metacpan.org/pod/List::MoreUtils

Plugin Description Category External
libraries

Developer

2016.vcf.gz

2. The file needs to be tabix indexed. You can do this by following
commands:

gzip -d avada_v1.00_2016.vcf.gz
bgzip avada_v1.00_2016.vcf
tabix avada_v1.00_2016.vcf.gz

3. As you have already noticed, tabix utility must be installed in
your path to use this plugin.

The plugin can then be run to retrieve AVADA annotations. By
default, the variants are matched with the HGNC gene symbol

./vep -i variations.vcf --plugin
AVADA,file=path/to/file

The output always includes one of the following columns depending
on the option passed:

AVADA_PMID: PubMed ID evidence for the variant as reported
by AVADA

AVADA_PMID_WITH_VARIANT: PubMed ID evidence for the
variant as reported by AVADA along with the original variant
string

AVADA_PMID_WITH_FEATURE: PubMed ID evidence for the
variant as reported by AVADA along with feature id

AVADA_PMID_WITH_FEATURE_AND_VARIANT: PubMed ID
evidence for the variant as reported by AVADA along with
feature id and original variant string

The plugin can optionally be run by specifying the feature to match
with.

In order to match by HGNC gene symbol:

./vep -i variations.vcf --plugin
AVADA,file=path/to/file,feature_match_by=gene_s
ymbol

In order to match by Ensembl gene identifier :

./vep -i variations.vcf --plugin
AVADA,file=path/to/file,feature_match_by=ensemb
l_gene_id

In order to match by RefSeq identifier :

./vep -i variations.vcf --plugin
AVADA,file=path/to/file,feature_match_by=refseq
_id

The plugin can also be run to report the original variant string
reported in the publication.

./vep -i variations.vcf --plugin
AVADA,file=path/to/file,original_variant_string
=1

http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz
http://bejerano.stanford.edu/AVADA/avada_v1.00_2016.vcf.gz

Pathogenicity
predictions

Conservation

Plugin Description Category External
libraries

Developer

Usage examples:

./vep -i variations.vcf --plugin
AVADA,file=path/to/file
./vep -i variations.vcf --plugin
AVADA,file=path/to/file,feature_match_by=
<gene_symbol|ensembl_gene_id|refseq_id>

BayesDel This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds the BayesDel scores to VEP output.

BayesDel is a deleteriousness meta-score combining multiple
deleteriousness predictors to create an overall score. It works for
coding and non-coding variants, single nucleotide variants and
small insertion/deletions. The range of the score is from -1.29334 to
0.75731. The higher the score, the more likely the variant is
pathogenic. For more information please visit:
https://fenglab.chpc.utah.edu/BayesDel/BayesDel.html

Please cite the BayesDel publication alongside the Ensembl VEP if
you use this resource:
https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23158

BayesDel pre-computed scores can be downloaded from
https://drive.google.com/drive/folders/1K4LI6ZSsUGBhHoChUtegC
8bgCt7hbQlA Note: These files only contain pre-computed
BayesDel scores for missense variants for assembly GRCh37.

For GRCh37:

tar zxvf BayesDel_170824_addAF.tgz
rm *.gz.tbi
gunzip *.gz
for f in BayesDel_170824_addAF_chr*; do grep -v
"^#" $f >> BayesDel_170824_addAF.txt; done
cat BayesDel_170824_addAF.txt | sort -k1,1 -
k2,2n > BayesDel_170824_addAF_sorted.txt
grep "^#" BayesDel_170824_addAF_chr1 >
BayesDel_170824_addAF_all_scores.txt
cat BayesDel_170824_addAF_sorted.txt >>
BayesDel_170824_addAF_all_scores.txt
bgzip BayesDel_170824_addAF_all_scores.txt
tabix -s 1 -b 2 -e 2
BayesDel_170824_addAF_all_scores.txt.gz

For GRCh38: Remap GRCh37 file

The tabix utility must be installed in your path to use this plugin.

Usage examples:

mv BayesDel.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
BayesDel,file=/path/to/BayesDel/BayesDel_170824
_addAF_all_scores.txt.gz

- Ensembl

Blosum62 This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
looks up the BLOSUM 62 substitution matrix score for the reference
and alternative amino acids predicted for a missense mutation. It
adds one new entry to the VEP's Extra column, BLOSUM62 which
is the associated score.

Usage examples:

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/BayesDel.pm
https://fenglab.chpc.utah.edu/BayesDel/BayesDel.html
https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23158
https://drive.google.com/drive/folders/1K4LI6ZSsUGBhHoChUtegC8bgCt7hbQlA
https://drive.google.com/drive/folders/1K4LI6ZSsUGBhHoChUtegC8bgCt7hbQlA
https://github.com/Ensembl/VEP_plugins/blob/release/114/Blosum62.pm

Pathogenicity
predictions

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

mv Blosum62.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin Blosum62

CADD
Combined
Annotation
Dependent
Depletion

A VEP plugin that retrieves CADD scores for variants from one or
more tabix-indexed CADD data files.

Please cite the CADD publication alongside the VEP if you use this
resource: https://www.ncbi.nlm.nih.gov/pubmed/24487276

The tabix utility must be installed in your path to use this plugin.

The CADD SNV and indels data files (and respective Tabix index
files) can be downloaded from -
http://cadd.gs.washington.edu/download

The CADD SV data files (and respective Tabix index files) can be
downloaded from - https://kircherlab.bihealth.org/download/CADD-
SV/v1.1/

By default the plugin is designed to not annotate SV variant if a SNV
and/or indels CADD annotation file is provided. Because it can
results in too many lines matched from the annotation files and
increase run time exponentially. You can override this behavior by
providing force_annotate=1 which will force the plugin to annotate
with the expense of increasing runtime.

The plugin works with all versions of available CADD files. The
plugin only reports scores and does not consider any additional
annotations from a CADD file. It is therefore sufficient to use CADD
files without the additional annotations.

Usage examples:

mv CADD.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
CADD,snv=/FULL_PATH_TO_CADD_FILE/whole_genome_S
NVs.tsv.gz,indels=/FULL_PATH_TO_CADD_FILE/InDel
s.tsv.gz
./vep -i structural_variations.vcf --plugin
CADD,sv=/FULL_PATH_TO_CADD_FILE/1000G_phase3_SV
s.tsv.gz
./vep -i structural_variations.vcf --plugin
CADD,snv=/FULL_PATH_TO_CADD_FILE/whole_genome_S
NVs.tsv.gz,indels=/FULL_PATH_TO_CADD_FILE/InDel
s.tsv.gz,force_annotate=1

- Ensembl

CAPICE A VEP plugin that retrieves CAPICE scores for variants from one or
more tabix-indexed CAPICE data files, in order to predict their
pathogenicity.

Please cite the CAPICE publication alongside the VEP if you use
this resource: https://pubmed.ncbi.nlm.nih.gov/32831124/

The tabix utility must be installed in your path to use this plugin. The
CAPICE SNVs, InDels and respective index (TBI) files for GRCh37
can be downloaded from https://zenodo.org/record/3928295

To filter results, please use filter_vep with the output file or standard
output. Documentation on filter_vep is available at:
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html

For recommendations on threshold selection, please read the
CAPICE publication.

Usage examples:

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/CADD.pm
https://www.ncbi.nlm.nih.gov/pubmed/24487276
http://cadd.gs.washington.edu/download
https://kircherlab.bihealth.org/download/CADD-SV/v1.1/
https://kircherlab.bihealth.org/download/CADD-SV/v1.1/
https://github.com/Ensembl/VEP_plugins/blob/release/114/CAPICE.pm
https://pubmed.ncbi.nlm.nih.gov/32831124/
https://zenodo.org/record/3928295
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html

Pathogenicity
predictions

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

mv CAPICE.pm ~/.vep/Plugins
Download CAPICE SNVs, InDels and index (TBI)
files to the same path
- capice_v1.0_build37_indels.tsv.gz
- capice_v1.0_build37_indels.tsv.gz.tbi
- capice_v1.0_build37_snvs.tsv.gz
- capice_v1.0_build37_snvs.tsv.gz.tbi
./vep -i variations.vcf --plugin
CAPICE,snv=/FULL_PATH_TO_CAPICE_FILE/capice_v1.
0_build37_snvs.tsv.gz,indels=/FULL_PATH_TO_CAPI
CE_FILE/capice_v1.0_build37_indels.tsv.gz
./filter_vep -i variant_effect_output.txt --
filter "CAPICE_SCORE >= 0.02"

Carol A VEP plugin that calculates the Combined Annotation scoRing
toOL (CAROL) score (1) for a missense mutation based on the pre-
calculated SIFT (2) and PolyPhen-2 (3) scores from the Ensembl
API (4).

It adds one new entry class to the VEP's Extra column, CAROL
which is the calculated CAROL score. Note that this module is a
perl reimplementation of the original R script, available at:
https://sanger.ac.uk/tool/carol/

I believe that both versions implement the same algorithm, but if
there are any discrepancies the R version should be treated as the
reference implementation. Bug reports are welcome.

References:

1. Lopes MC, Joyce C, Ritchie GRS, John SL, Cunningham F,
Asimit J, Zeggini E. A combined functional annotation score for
non-synonymous variants Human Heredity 73(1):47-51 (2012)
doi:10.1159/000334984

2. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding
non-synonymous variants on protein function using the SIFT
algorithm Nature Protocols 4(8):1073-1081 (2009)
doi:10.1038/nprot.2009.86

3. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE,
Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method
and server for predicting damaging missense mutations Nature
Methods 7(4):248-249 (2010) doi:10.1038/nmeth0410-248

4. Flicek P, et al. Ensembl 2012 Nucleic Acids Research
40(D1):D84-D90 (2011) doi: 10.1093/nar/gkr991

Usage examples:

mv Carol.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin Carol

Math::CDF
qw(pnorm
qnorm)

Ensembl

ClinPred This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds pre-calculated scores from ClinPred. ClinPred is a prediction
tool to identify disease-relevant nonsynonymous variants.

Please cite the ClinPred publication alongside the VEP if you use
this resource:
https://www.sciencedirect.com/science/article/pii/S00029297183027
14

ClinPred scores can be downloaded from
https://sites.google.com/site/clinpred/download

The following steps are neccessary to tabix the ClinPred.txt.gz file
before running the plugin:

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/Carol.pm
https://sanger.ac.uk/tool/carol/
https://doi.org/10.1159/000334984
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1038/nmeth0410-248
https://metacpan.org/pod/Math::CDF
https://github.com/Ensembl/VEP_plugins/blob/release/114/ClinPred.pm
https://www.sciencedirect.com/science/article/pii/S0002929718302714
https://www.sciencedirect.com/science/article/pii/S0002929718302714
https://sites.google.com/site/clinpred/download

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

For GRCh37:

gzip -d ClinPred.txt.gz # to unzip the text
file
cat ClinPred.txt | tr " " "\t" >
ClinPred_tabbed.tsv # change to tab-delimited
file
sed -i '1s/.*/#&/' ClinPred_tabbed.tsv #
comment the first line
sed -i 1s/Chr/chr/ ClinPred_tabbed.tsv #
convert Chr to chr
bgzip ClinPred_tabbed.tsv
tabix -f -s 1 -b 2 -e 2 ClinPred_tabbed.tsv.gz

For GRCh38:

gzip -d ClinPred_hg38.txt.gz # unzip the text
file
awk '($2 == "Start" || $2 ~ /^[0-9]+$/){print
$0}' ClinPred_hg38.txt >
"ClinPred_hg38_tabbed.tsv" # remove problematic
lines
sed -i '1s/.*/#&/' ClinPred_hg38_tabbed.tsv #
comment the first line
sed -i 1s/Chr/chr/ ClinPred_hg38_tabbed.tsv #
convert Chr to chr

{ head -n 1 ClinPred_hg38_tabbed.tsv; tail -n +2
ClinPred_hg38_tabbed.tsv | sort -k1,1V -k2,2V; } >
ClinPred_hg38_sorted_tabbed.tsv # sort file by chromosome and
position

bgzip ClinPred_hg38_sorted_tabbed.tsv
tabix -f -s 1 -b 2 -e 2
ClinPred_hg38_sorted_tabbed.tsv.gz

The tabix utility must be installed in your path to use this plugin.
Check https://github.com/samtools/htslib.git for instructions.

Usage examples:

mv ClinPred.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
ClinPred,file=ClinPred_tabbed.tsv.gz

Condel A VEP plugin that calculates the Consensus Deleteriousness
(Condel) score (1) for a missense mutation based on the pre-
calculated SIFT (2) and PolyPhen-2 (3) scores from the Ensembl
API (4).

It adds one new entry class to the VEP's Extra column, Condel
which is the calculated Condel score. This version of Condel was
developed by the Biomedical Genomics Group of the Universitat
Pompeu Fabra, at the Barcelona Biomedical Research Park and
available at https://bg.upf.edu/condel. The code in this plugin is
based on a script provided by this group and slightly reformatted to
fit into the Ensembl API.

The plugin takes 3 command line arguments by this order:

1. Path to a Condel configuration directory which contains cutoffs
and the distribution files, etc.

- Ensembl

https://github.com/samtools/htslib.git
https://github.com/Ensembl/VEP_plugins/blob/release/114/Condel.pm
https://bg.upf.edu/condel

Conservation

Plugin Description Category External
libraries

Developer

2. Output: output the Condel score (s), prediction (p) or both (b);
both (b) is the default.

3. Version of Condel to use: either 1 (original version) or 2 (newer
version); 2 is the default and is recommended to avoid false
positive predictions from Condel in some circumstances.

An example Condel configuration file and a set of distribution files
can be found in the config/Condel directory in this repository.
You should edit the config/Condel/config/condel_SP.conf
file and set the condel.dir parameter to the full path to the
location of the config/Condel directory on your system.

References:

1. Gonzalez-Perez A, Lopez-Bigas N. Improving the assessment
of the outcome of non-synonymous SNVs with a Consensus
deleteriousness score (Condel) Am J Hum Genet 88(4):440-
449 (2011) doi:10.1016/j.ajhg.2011.03.004

2. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding
non-synonymous variants on protein function using the SIFT
algorithm Nature Protocols 4(8):1073-1081 (2009)
doi:10.1038/nprot.2009.86

3. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE,
Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method
and server for predicting damaging missense mutations Nature
Methods 7(4):248-249 (2010) doi:10.1038/nmeth0410-248

4. Flicek P, et al. Ensembl 2012 Nucleic Acids Research (2011)
doi:10.1093/nar/gkr991

Usage examples:

mv Condel.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
Condel,/path/to/config/Condel/config,b

Conservatio
n

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
retrieves a conservation score from the Ensembl Compara
databases for variant positions. You can specify the method link
type and species sets as command line options, the default is to
fetch GERP scores from the EPO 35 way mammalian alignment
(please refer to the Compara documentation for more details of
available analyses).

If a variant affects multiple nucleotides the average score for the
position will be returned, and for insertions the average score of the
2 flanking bases will be returned. If the MAX parameter is used, the
maximum score of any of the affected bases will be reported
instead.

The plugin uses the ensembl-compara API module (optional, see
http://www.ensembl.org/info/docs/api/index.html) or obtains data
directly from BigWig files (optional, see
https://ftp.ensembl.org/pub/current_compara/conservation_scores/)

Usage examples:

mv Conservation.pm ~/.vep/Plugins

./vep -i variations.vcf --plugin
Conservation,mammals
./vep -i variations.vcf --plugin
Conservation,/path/to/bigwigfile.bw
./vep -i variations.vcf --plugin
Conservation,/path/to/bigwigfile.bw,MAX

Net::FTP Ensembl

https://doi.org/10.1016/j.ajhg.2011.03.004
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1093/nar/gkr991
https://github.com/Ensembl/VEP_plugins/blob/release/114/Conservation.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/Conservation.pm
http://www.ensembl.org/info/docs/api/index.html
https://ftp.ensembl.org/pub/current_compara/conservation_scores/
https://metacpan.org/pod/Net::FTP

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

./vep -i variations.vcf --plugin
Conservation,database,GERP_CONSERVATION_SCORE,m
ammals
./vep -i variations.vcf --plugin
Conservation,database,GERP_CONSERVATION_SCORE,m
ammals,MAX

dbNSFP A VEP plugin that retrieves data for missense variants from a tabix-
indexed dbNSFP file.

Please cite the dbNSFP publications alongside the VEP if you use
this resource:

dbNSFP https://www.ncbi.nlm.nih.gov/pubmed/21520341

dbNSFP v2.0 https://www.ncbi.nlm.nih.gov/pubmed/23843252

dbNSFP v3.0 https://www.ncbi.nlm.nih.gov/pubmed/26555599

dbNSFP v4 https://www.ncbi.nlm.nih.gov/pubmed/33261662

You must have the Bio::DB::HTS module or the tabix utility must
be installed in your path to use this plugin.

About dbNSFP data files:

Downoad dbNSFP files from
https://sites.google.com/site/jpopgen/dbNSFP.

There are two distinct branches of the files provided for
academic and commercial usage. Please use the appropriate
files for your use case.

The file must be processed depending on dbNSFP release
version and assembly (see commands below). We recommend
using -T option with the sort command to specify a temporary
directory with sufficient space.

The resulting file must be indexed with tabix before use by this
plugin (see commands below).

For release 4.9c:

version=4.9c
wget
https://dbnsfp.s3.amazonaws.com/dbNSFP${version
}.zip
unzip dbNSFP${version}.zip
zcat dbNSFP${version}_variant.chr1.gz | head -
n1 > h

GRCh38/hg38 data

zgrep -h -v ^#chr dbNSFP${version}_variant.chr*
| sort -k1,1 -k2,2n - | cat h - | bgzip -c >
dbNSFP${version}_grch38.gz
tabix -s 1 -b 2 -e 2 dbNSFP${version}_grch38.gz

GRCh37/hg19 data

zgrep -h -v ^#chr dbNSFP${version}_variant.chr*
| awk '$8 != "." ' | sort -k8,8 -k9,9n - | cat
h - | bgzip -c > dbNSFP${version}_grch37.gz
tabix -s 8 -b 9 -e 9 dbNSFP${version}_grch37.gz

When running the plugin you must list at least one column to
retrieve from the dbNSFP file, specified as parameters to the plugin,

File::Basenam
e
qw(basename)

Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/dbNSFP.pm
https://www.ncbi.nlm.nih.gov/pubmed/21520341
https://www.ncbi.nlm.nih.gov/pubmed/23843252
https://www.ncbi.nlm.nih.gov/pubmed/26555599
https://www.ncbi.nlm.nih.gov/pubmed/33261662
https://sites.google.com/site/jpopgen/dbNSFP
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://dbnsfp.s3.amazonaws.com/dbNSFP4.9c.zip
https://metacpan.org/pod/File::Basename
https://metacpan.org/pod/File::Basename

Plugin Description Category External
libraries

Developer

such as:

--plugin
dbNSFP,/path/to/dbNSFP.gz,LRT_score,GERP++_RS

You may include all columns with ALL; this fetches a large amount
of data per variant:

--plugin dbNSFP,/path/to/dbNSFP.gz,ALL

Tabix also allows the data file to be hosted on a remote server. This
plugin is fully compatible with such a setup - simply use the URL of
the remote file:

--plugin
dbNSFP,http://my.files.com/dbNSFP.gz,col1,col2

The plugin replaces occurrences of ; with , and | with &. However,
some data field columns, e.g. Interpro_domain, use the
replacement characters. We added a file with replacement logic for
customising the required replacement of ; and | in dbNSFP data
columns. In addition to the default replacements (; to , and | to &)
users can add customised replacements. Users can either modify
the file dbNSFP_replacement_logic in the VEP_plugins
directory or provide their own file as second argument when calling
the plugin:

--plugin
dbNSFP,/path/to/dbNSFP.gz,/path/to/dbNSFP_repla
cement_logic,LRT_score,GERP++_RS

Note that transcript sequences referred to in dbNSFP may be out of
sync with those in the latest release of Ensembl; this may lead to
discrepancies with scores retrieved from other sources.

If the dbNSFP README file is found in the same directory as the
data file, column descriptions will be read from this and incorporated
into the VEP output file header.

The plugin matches rows in the tabix-indexed dbNSFP file on:

genomic position

alt allele

aaref - reference amino acid

aaalt - alternative amino acid

To match only on the genomic position and the alt allele use
pep_match=0:

--plugin
dbNSFP,/path/to/dbNSFP.gz,pep_match=0,col1,col2

Some fields contain multiple values, one per Ensembl transcript ID.
By default all values are returned, separated by ; in the default VEP
output format. To return values only for the matched Ensembl
transcript ID use transcript_match=1. This behaviour only
affects transcript-specific fields; non-transcript-specific fields are
unaffected.

--plugin
dbNSFP,/path/to/dbNSFP.gz,transcript_match=1,co

http://my.files.com/dbNSFP.gz
http://my.files.com/dbNSFP.gz
http://my.files.com/dbNSFP.gz
http://my.files.com/dbNSFP.gz
http://my.files.com/dbNSFP.gz
http://my.files.com/dbNSFP.gz
http://my.files.com/dbNSFP.gz
http://my.files.com/dbNSFP.gz
http://my.files.com/dbNSFP.gz

Splicing
predictions

Plugin Description Category External
libraries

Developer

l1,col2

NB 1: Using this flag may cause no value to return if the version of
the Ensembl transcript set differs between VEP and dbNSFP.

NB 2: MutationTaster entries are keyed on a different set of
transcript IDs. Using the transcript_match flag with any
MutationTaster field selected will have no effect i.e. all entries are
returned. Information on corresponding transcript(s) for
MutationTaster fields can be found using
http://www.mutationtaster.org/ChrPos.html

Usage examples:

mv dbNSFP.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
dbNSFP,/path/to/dbNSFP.gz,col1,col2
./vep -i variations.vcf --plugin
dbNSFP,'consequence=ALL',/path/to/dbNSFP.gz,col
1,col2
./vep -i variations.vcf --plugin
dbNSFP,'consequence=3_prime_UTR_variant&intron_
variant',/path/to/dbNSFP.gz,col1,col2

dbscSNV A VEP plugin that retrieves data for splicing variants from a tabix-
indexed dbscSNV file.

Please cite the dbscSNV publication alongside the VEP if you use
this resource: http://nar.oxfordjournals.org/content/42/22/13534

The Bio::DB::HTS perl library or tabix utility must be installed in your
path to use this plugin. The dbscSNV data file can be downloaded
from https://sites.google.com/site/jpopgen/dbNSFP.

The file must be processed and indexed by tabix before use by this
plugin. dbscSNV1.1 has coordinates for both GRCh38 and
GRCh37; the file must be processed differently according to the
assembly you use.

wget
ftp://dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbs
cSNV1.1.zip
unzip dbscSNV1.1.zip
head -n1 dbscSNV1.1.chr1 > h

GRCh38

cat dbscSNV1.1.chr* | grep -v ^chr | sort -k5,5
-k6,6n | cat h - | awk '$5 != "."' | bgzip -c >
dbscSNV1.1_GRCh38.txt.gz
tabix -s 5 -b 6 -e 6 -c c
dbscSNV1.1_GRCh38.txt.gz

GRCh37

cat dbscSNV1.1.chr* | grep -v ^chr | cat h - |
bgzip -c > dbscSNV1.1_GRCh37.txt.gz
tabix -s 1 -b 2 -e 2 -c c
dbscSNV1.1_GRCh37.txt.gz

Note that in the last command we tell tabix that the header line
starts with "c"; this may change to the default of "#" in future
versions of dbscSNV.

- Ensembl

http://www.mutationtaster.org/ChrPos.html
https://github.com/Ensembl/VEP_plugins/blob/release/114/dbscSNV.pm
http://nar.oxfordjournals.org/content/42/22/13534
https://sites.google.com/site/jpopgen/dbNSFP
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip
https://www.ensembl.orgftp//dbnsfp:dbnsfp@dbnsfp.softgenetics.com/dbscSNV1.1.zip

Variant data

Plugin Description Category External
libraries

Developer

Tabix also allows the data file to be hosted on a remote server. This
plugin is fully compatible with such a setup - simply use the URL of
the remote file:

--plugin
dbscSNV,http://my.files.com/dbscSNV.txt.gz

Note that transcript sequences referred to in dbscSNV may be out
of sync with those in the latest release of Ensembl; this may lead to
discrepancies with scores retrieved from other sources.

Usage examples:

mv dbscSNV.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
dbscSNV,/path/to/dbscSNV1.1_GRCh38.txt.gz

DeNovo A VEP plugin that identifies de novo variants in a VCF file. The
plugin is not compatible with JSON output format.

Options are passed to the plugin as key=value pairs:

Argume
nt

Description

ped Path to PED file (mandatory) The file is tab or white-
space delimited with five mandatory columns:

family ID

individual ID

paternal ID

maternal ID

sex

phenotype (optional)

report
_dir

Write files in report_dir (optional)

full_r
eport

Set to 1 to report all types of variants (optional) By
default, the plugin only reports de novo variants.

The plugin can then be run:

./vep -i variations.vcf --plugin
DeNovo,ped=samples.ped
./vep -i variations.vcf --plugin
DeNovo,ped=samples.ped,report_dir=path/to/dir
./vep -i variations.vcf --plugin
DeNovo,ped=samples.ped,report_dir=path/to/dir,f
ull_report=1

Usage examples:

mv DeNovo.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
DeNovo,ped=samples.ped
./vep -i variations.vcf --plugin
DeNovo,ped=samples.ped,full_report=1

List::MoreUti
ls
qw(uniq)

Cwd

Ensembl

http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
http://my.files.com/dbscSNV.txt.gz
https://github.com/Ensembl/VEP_plugins/blob/release/114/DeNovo.pm
https://metacpan.org/pod/List::MoreUtils
https://metacpan.org/pod/List::MoreUtils
https://metacpan.org/pod/Cwd

Gene
tolerance to
change

Nearby
features

Plugin Description Category External
libraries

Developer

DosageSensit
ivity

A VEP plugin that retrieves haploinsufficiency and triplosensitivity
probability scores for affected genes from a dosage sensitivity
catalogue published in paper -
https://www.sciencedirect.com/science/article/pii/S00928674220078
87

Please cite the above publication alongside the VEP if you use this
resource.

This plugin returns two scores:

pHaplo score gives the probability of a gene being
haploinsufficient (deletion intolerant)

pTriplo score gives the probability of a gene being
triploinsensitive (duplication intolerant)

Pre-requisites: You need the compressed tsv file containing the
dosage sensitivity score. The file
Collins_rCNV_2022.dosage_sensitivity_scores.tsv.gz can be
downloaded from here -
https://zenodo.org/record/6347673/files/Collins_rCNV_2022.dosage
_sensitivity_scores.tsv.gz

Options are passed to the plugin as key=value pairs:

Arg
um
ent

Description

fil
e

(mandatory) compressed tsv file containing dosage
sensitivity scores

cov
er

set value to 1 (0 by default) to report scores only if the
variant covers the affected feature completely (e.g. - a CNV
that duplicates the gene). The feature is a gene if using --
database otherwise it is a transcript.

Usage examples:

mv DosageSensitivity.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
DosageSensitivity,file=/FULL_PATH_TO/Collins_rC
NV_2022.dosage_sensitivity_scores.tsv.gz
./vep -i variations.vcf --plugin
DosageSensitivity,file=/FULL_PATH_TO/Collins_rC
NV_2022.dosage_sensitivity_scores.tsv.gz,cover=
1

- Ensembl

Downstrea
m

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
predicts the downstream effects of a frameshift variant on the
protein sequence of a transcript. It provides the predicted
downstream protein sequence (including any amino acids
overlapped by the variant itself), and the change in length relative to
the reference protein.

Note that changes in splicing are not predicted - only the existing
translateable (i.e. spliced) sequence is used as a source of
translation. Any variants with a splice site consequence type are
ignored.

If VEP is run in offline mode using the flag --offline, a FASTA file is
required. See:
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#
fasta Sequence may be incomplete without a FASTA file or
database connection.

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/DosageSensitivity.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/DosageSensitivity.pm
https://www.sciencedirect.com/science/article/pii/S0092867422007887
https://www.sciencedirect.com/science/article/pii/S0092867422007887
https://zenodo.org/record/6347673/files/Collins_rCNV_2022.dosage_sensitivity_scores.tsv.gz
https://zenodo.org/record/6347673/files/Collins_rCNV_2022.dosage_sensitivity_scores.tsv.gz
https://github.com/Ensembl/VEP_plugins/blob/release/114/Downstream.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/Downstream.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta

Visualisation

Regulatory
impact

Plugin Description Category External
libraries

Developer

Usage examples:

mv Downstream.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin Downstream

Draw A VEP plugin that draws pictures of the transcript model showing
the variant location.

Takes five optional paramters:

1. File name stem for images

2. Image width in pixels (default: 1000px)

3. Image height in pixels (default: 100px)

4. Transcript ID - only draw images for this transcript

5. Variant ID - only draw images for this variant

e.g.

./vep -i variations.vcf --plugin
Draw,myimg,2000,100

Images are written to
[file_stem]_[transcript_id]_[variant_id].png

Requires GD library installed to run.

Usage examples:

mv Draw.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin Draw

GD::Polygo
n

GD

Ensembl

Enformer This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds pre-calculated Enformer predictions of variant impact on
chromatin and gene expression.

The predictions have been aggregated across all 896 spatial bins to
generate 5313 features corresponding to track prediction changes
in differnet assays and cell types.

This plugin is available for GRCh37 and GRCh38

Please cite the Enformer publication alongside the VEP if you use
this resource: https://www.nature.com/articles/s41592-021-01252-x

GRCh38 scores were lifted over using CrossMap from the Enformer
scores available here -
https://console.cloud.google.com/storage/browser/dm-
enformer/variant-scores/1000-genomes/enformer

Enformer scores can be downloaded from
https://ftp.ensembl.org/pub/current_variation/Enformer for GRCh37
and GRCh38.

The plugin can then be run as default to retrieve SAD (SNP Activity
Difference (SAD) and SAR (Same as SAD, by computing np.log2(1
+ model(alternate_sequence)) - np.log2(1 +
model(reference_sequence)) scores from Enforme :

./vep -i variations.vcf --assembly GRCh38 --
plugin
Enformer,file=/path/to/Enformer/data.vcf.gz

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/Draw.pm
https://metacpan.org/pod/GD::Polygon
https://metacpan.org/pod/GD::Polygon
https://metacpan.org/pod/GD
https://github.com/Ensembl/VEP_plugins/blob/release/114/Enformer.pm
https://www.nature.com/articles/s41592-021-01252-x
https://console.cloud.google.com/storage/browser/dm-enformer/variant-scores/1000-genomes/enformer
https://console.cloud.google.com/storage/browser/dm-enformer/variant-scores/1000-genomes/enformer
https://ftp.ensembl.org/pub/current_variation/Enformer

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

or run with option to only retrieve the SAD (SNP Activity Difference
(SAD) scores - main variant effect score computed as
model(alternate_sequence) - model(reference_sequence) score

./vep -i variations.vcf --assembly GRCh38 --
plugin
Enformer,file=/path/to/Enformer/data.vcf.gz,SAD
=1

or run with option to only retrieve the SAR (Same as SAD, by
computing np.log2(1 + model(alternate_sequence)) - np.log2(1 +
model(reference_sequence)) score

./vep -i variations.vcf --assembly GRCh38 --
plugin
Enformer,file=/path/to/Enformer/data.vcf.gz,SAR
=1

or run with option to also retrieve the principal component scores
which are a reduced representation of a much bigger vector of the
SAD and SAR after using principal component analysis (PCA)

./vep -i variations.vcf --assembly GRCh38 --
plugin
Enformer,file=/path/to/Enformer/data.vcf.gz,PC=
1

The tabix utility must be installed in your path to use this plugin.
Check https://github.com/samtools/htslib.git for instructions.

Usage examples:

mv Enformer.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
Enformer,file=Enformer_grch38.vcf.gz

EVE This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds information from EVE (evolutionary model of variant effect).

This plugin only report EVE scores for input variants and does not
merge input lines to report on adjacent variants. It is only available
for GRCh38.

Please cite EVE publication alongside the VEP if you use this
resource: https://www.nature.com/articles/s41586-021-04043-8

###
####
Bash script to merge all VCFs from EVE
dataset. #
###
####
BEGIN
EVE input file can be downloaded from
https://evemodel.org/api/proteins/bulk/download
/
Input: VCF files by protein
(vcf_files_missense_mutations inside zip
folder)
Output: Compressed Merged VCF file (vcf.gz) +
index file (.tbi)
DATA_FOLDER=/<PATH-

- Ensembl

https://github.com/samtools/htslib.git
https://github.com/Ensembl/VEP_plugins/blob/release/114/EVE.pm
https://www.nature.com/articles/s41586-021-04043-8
https://evemodel.org/api/proteins/bulk/download/
https://evemodel.org/api/proteins/bulk/download/

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

TO>/vcf_files_missense_mutations # Fill this
line
OUTPUT_FOLDER=/<PATH-TO>/eve_plugin # Fill this
line
OUTPUT_NAME=eve_merged.vcf # Default output
name
Get header from first VCF
cat `ls ${DATA_FOLDER}/*vcf | head -n1` >
header
Get variants from all VCFs and add to a
single-file
ls ${DATA_FOLDER}/*vcf | while read VCF; do
grep -v '^#' ${VCF} >> variants; done
Merge Header + Variants in a single file
cat header variants | \
awk '$1 ~ /^#/ {print $0;next} {print $0 |
"sort -k1,1V -k2,2n"}' >
${OUTPUT_FOLDER}/${OUTPUT_NAME};
Remove temporary files
rm header variants
Compress and index
bgzip ${OUTPUT_FOLDER}/${OUTPUT_NAME};
If not installed, use: sudo apt install tabix
tabix ${OUTPUT_FOLDER}/${OUTPUT_NAME}.gz;
END

Usage examples:

cp EVE.pm ${HOME}/.vep/Plugins
./vep -i variations.vcf --plugin
EVE,file=/path/to/eve/data.vcf.gz # By default,
Class75 is used.
./vep -i variations.vcf --plugin
EVE,file=/path/to/eve/data.vcf.gz,class_number=
60

FATHMM A VEP plugin that gets FATHMM scores and predictions for
missense variants.

You will need the fathmm.py script and its dependencies (Python,
Python MySQLdb). You should create a "config.ini" file in the same
directory as the fathmm.py script with the database connection
options. More information about how to set up FATHMM can be
found on the FATHMM website at
https://github.com/HAShihab/fathmm

A typical installation could consist of:

wget
https://raw.github.com/HAShihab/fathmm/master/c
gi-bin/fathmm.py
wget
http://fathmm.biocompute.org.uk/database/fathmm
.v2.3.SQL.gz
gunzip fathmm.v2.3.SQL.gz
mysql -h[host] -P[port] -u[user] -p[pass] -
e"CREATE DATABASE fathmm"
mysql -h[host] -P[port] -u[user] -p[pass] -
Dfathmm < fathmm.v2.3.SQL
echo -e "[DATABASE]\nHOST = [host]\nPORT =
[port]\nUSER = [user]\nPASSWD = [pass]\nDB =
fathmm\n" > config.ini

Usage examples:

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/FATHMM.pm
https://github.com/HAShihab/fathmm
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
https://raw.github.com/HAShihab/fathmm/master/cgi-bin/fathmm.py
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz
http://fathmm.biocompute.org.uk/database/fathmm.v2.3.SQL.gz

Pathogenicity
predictions

External ID

Motif

Plugin Description Category External
libraries

Developer

mv FATHMM.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
FATHMM,"python2 /path/to/fathmm/fathmm.py"

FATHMM_MK
L

A VEP plugin that retrieves FATHMM-MKL scores for variants from
a tabix-indexed FATHMM-MKL data file.

See https://github.com/HAShihab/fathmm-MKL for details.

NB: The currently available data file is for GRCh37 only.

Usage examples:

mv FATHMM_MKL.pm ~/.vep/Plugins
./vep -i input.vcf --plugin FATHMM_MKL,fathmm-
MKL_Current.tab.gz

- Ensembl

FlagLRG A VEP plugin that retrieves the LRG ID matching either the RefSeq
or Ensembl transcript IDs.

You can obtain the list_LRGs_transcripts_xrefs.txt using:

wget
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_
LRGs_transcripts_xrefs.txt

Usage examples:

mv FlagLRG.pm ~/.vep/Plugins
./vep -i variants.vcf --plugin
FlagLRG,/path/to/list_LRGs_transcripts_xrefs.tx
t

Text::CSV Stephen
Kazakoff

FunMotifs This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds tissue-specific transcription factor motifs from FunMotifs to
VEP output.

Please cite the FunMotifs publication alongside the VEP if you use
this resource. The preprint can be found at:
https://www.biorxiv.org/content/10.1101/683722v1

FunMotifs files can be downloaded from:
http://bioinf.icm.uu.se:3838/funmotifs/ At the time of writing, all BED
files found through this link support GRCh37, however other
assemblies are supported by the plugin if an appropriate BED file is
supplied.

The tabix utility must be installed in your path to use this plugin.

Usage examples:

mv FunMotifs.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
FunMotifs,/path/to/funmotifs/all_tissues.bed.gz
,uterus
./vep -i variations.vcf --plugin
FunMotifs,/path/to/funmotifs/blood.funmotifs_so
rted.bed.gz,fscore,dnase_seq

Parameters Required:

[0] : FunMotifs BED file
[1]+ : List of columns to include within VEP

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/FATHMM_MKL.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/FATHMM_MKL.pm
https://github.com/HAShihab/fathmm-MKL
https://github.com/Ensembl/VEP_plugins/blob/release/114/FlagLRG.pm
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://ftp.ebi.ac.uk/pub/databases/lrgex/list_LRGs_transcripts_xrefs.txt
https://metacpan.org/pod/Text::CSV
https://github.com/Ensembl/VEP_plugins/blob/release/114/FunMotifs.pm
https://www.biorxiv.org/content/10.1101/683722v1
http://bioinf.icm.uu.se:3838/funmotifs/

Phenotype
data and
citations

Plugin Description Category External
libraries

Developer

output (e.g. fscore, skin, contactingdomain)

G2P
gene2phenotype

A VEP plugin that uses G2P allelic requirements to assess variants
in genes for potential phenotype involvement.

The plugin has multiple configuration options, though minimally
requires only the CSV file of G2P data. This Plugin is available for
GRCh38 and GRCh37.

For further information see: Thormann A, Halachev M, McLaren W,
et al. Flexible and scalable diagnostic filtering of genomic variants
using G2P with Ensembl VEP. Nature Communications. 2019
May;10(1):2373. doi:10.1038/s41467-019-10016-3 . PMID:
31147538; PMCID: PMC6542828.

Options are passed to the plugin as key=value pairs, (defaults in
parentheses):

Arg
ume
nt

Description

fil
e

Path to G2P data file. The file needs to be uncompressed.

Download from
https://www.ebi.ac.uk/gene2phenotype/downloads

Download from PanelApp

var
ian
t_i
ncl
ude
_li
st

A list of variants to include even if variants do not pass
allele frequency filtering. The include list needs to be a
sorted, bgzipped and tabixed VCF file.

af_
mon
oal
lel
ic

maximum allele frequency for inclusion for monoallelic
genes (0.0001)

af_
bia
lle
lic

maximum allele frequency for inclusion for biallelic genes
(0.005)

con
fid
enc
e_l
eve
ls

Confidence levels include: definitive, strong, moderate,
limited Former confidence terms are still supported:
confirmed, probable, possible, both RD and IF. Separate
multiple values with &.
https://www.ebi.ac.uk/gene2phenotype/terminology Default
levels are confirmed and probable.

all
_co
nfi
den
ce_
lev
els

Set to 1 to include all confidence levels Setting the value to
1 will overwrite any confidence levels provided with the
confidence_levels option.

List::Util
qw(any)

Text::CSV

Scalar::Uti
l
qw(looks_lik
e_number)

FileHandle

Cwd

Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/G2P.pm
https://doi.org/10.1038/s41467-019-10016-3
https://www.ebi.ac.uk/gene2phenotype/downloads
https://www.ebi.ac.uk/gene2phenotype/terminology
https://metacpan.org/pod/List::Util
https://metacpan.org/pod/Text::CSV
https://metacpan.org/pod/Scalar::Util
https://metacpan.org/pod/Scalar::Util
https://metacpan.org/pod/FileHandle
https://metacpan.org/pod/Cwd

Plugin Description Category External
libraries

Developer

Arg
ume
nt

Description

af_
fro
m_v
cf

set value to 1 to include allele frequencies from VCF file.
Specifiy the list of reference populations to include with --
af_from_vcf_keys

af_
fro
m_v
cf_
key
s

VCF collections used for annotating variant alleles with
observed allele frequencies. Allele frequencies are retrieved
from VCF files. If af_from_vcf is set to 1 but no VCF
collections are specified with --af_from_vcf_keys all
available VCF collections are included. Available VCF
collections: topmed, uk10k, gnomADe, gnomADe_r2.1.1,
gnomADg, gnomADg_v3.1.2. Separate multiple values
with &. VCF collections contain the following populations:

topmed - TOPMed (available for GRCh37 and
GRCh38).

uk10k - ALSPAC, TWINSUK (available for GRCh37
and GRCh38).

gnomADe & gnomADe_r2.1.1 - gnomADe:AFR,
gnomADe:ALL, gnomADe:AMR, gnomADe:ASJ,
gnomADe:EAS, gnomADe:FIN, gnomADe:NFE,
gnomADe:OTH, gnomADe:SAS (for GRCh37 and
GRCh38 respectively).

gnomADg & gnomADg_v3.1.2 - gnomADg:AFR,
gnomADg:ALL, gnomADg:AMR, gnomADg:ASJ,
gnomADg:EAS, gnomADg:FIN, gnomADg:NFE,
gnomADg:OTH (for GRCh37 and GRCh38
respectively). Need to use af_from_vcf parameter
to use this option.

def
aul
t_a
f

default frequency of the input variant if no frequency data is
 found (0). This determines whether such variants are
included; the value of 0 forces variants with no frequency
data to be included as this is considered equivalent to
having a frequency of 0. Set to 1 (or any value higher than
af) to exclude them.

typ
es

SO consequence types to include. Separate multiple values
with & (splice_donor_variant, splice_acceptor_variant,
stop_gained, frameshift_variant, stop_lost,
initiator_codon_variant, inframe_insertion,
inframe_deletion,missense_variant,
coding_sequence_variant, start_lost,transcript_ablation,
transcript_amplification, protein_altering_variant)

log
_di
r

write stats to log files in log_dir

txt
_re
por
t

write all G2P complete genes and attributes to txt file

Variant data

Plugin Description Category External
libraries

Developer

Arg
ume
nt

Description

htm
l_r
epo
rt

write all G2P complete genes and attributes to html file

fil
ter
_by
_ge
ne_
sym
bol

set to 1 if filter by gene symbol. Do not set if filtering by
HGNC_id. This option is set to 1 when using PanelApp
files.

onl
y_m
ane

set to 1 to ignore transcripts that are not MANE N/B -
Information may be lost if this option is used.

For more information -
https://www.ebi.ac.uk/gene2phenotype/g2p_vep_plugin

Example:

--plugin
G2P,file=G2P.csv,af_monoallelic=0.05,types=stop
_gained&frameshift_variant
--plugin
G2P,file=G2P.csv,af_monoallelic=0.05,af_from_vc
f=1
--plugin
G2P,file=G2P.csv,af_from_vcf=1,af_from_vcf_keys
=topmed&gnomADe_r2.1.1
--plugin
G2P,file=G2P.csv,af_from_vcf=1,af_from_vcf_keys
=topmed&gnomADe_r2.1.1,confidence_levels='confi
rmed&probable&both RD and IF'
--plugin G2P,file=G2P.csv

Usage examples:

mv G2P.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
G2P,file=/path/to/G2P.csv

GeneBe A user-contributed VEP plugin that retrieves automatic ACMG
variant classification data from https://genebe.net/

Please cite the GeneBe publication alongside the VEP if you use
this resource: https://onlinelibrary.wiley.com/doi/10.1111/cge.14516 .

Please be advised that the GeneBe API is freely accessible for
academic purposes only, with a limited number of queries per day,
albeit at a high threshold. Kindly utilize this resource judiciously to
ensure its availability for others. For further information, please visit
https://genebe.net/about/api.

In order to extend your daily limits please make an account on
https://genebe.net/ and use your username and API-key as follows:

./vep -i variations.vcf --plugin
GeneBe,user=example@email.com,password=your_api

JSON Ensembl

Piotr
Stawinski

https://www.ebi.ac.uk/gene2phenotype/g2p_vep_plugin
https://github.com/Ensembl/VEP_plugins/blob/release/114/GeneBe.pm
https://genebe.net/
https://onlinelibrary.wiley.com/doi/10.1111/cge.14516
https://genebe.net/about/api
https://genebe.net/
https://metacpan.org/pod/JSON

Splicing
predictions

Plugin Description Category External
libraries

Developer

_key

Usage examples:

mv GeneBe.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin GeneBe

GeneSplice
r

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
runs GeneSplicer (https://ccb.jhu.edu/software/genesplicer/) to get
splice site predictions.

It evaluates a tract of sequence either side of and including the
variant, both in reference and alternate states. The amount of
sequence included either side defaults to 100bp, but can be
modified by passing e.g. "context=50" as a parameter to the plugin.

You will need to download the GeneSplicer binary and data from
ftp://ftp.ccb.jhu.edu/pub/software/genesplicer/GeneSplicer.tar.gz.
Extract the folder using:

tar -xzf GeneSplicer.tar.gz

GeneSplicer comes with precompiled binaries for multiple systems.
If the provided binaries do not run, compile genesplicer from
source:

cd $GS/sources
if macOS, run this step
[[$(uname -s) == "Darwin"]] && perl -pi -e
"s/^main /int main /" genesplicer.cpp
make
cd -
./vep [options] --plugin
GeneSplicer,$GS/sources/genesplicer,$GS/human

Predicted splicing regions that overlap the variant are reported in
the output with a /-separated string (e.g.,
loss/acceptor/727006-727007/High/16.231924)
consisting of the following data by this order:

1. state (no_change, diff, gain, loss)

2. type (donor, acceptor)

3. coordinates (start-end)

4. confidence (Low, Medium, High)

5. score

If multiple sites are predicted, their reports are separated by ",".

For diff, the confidence and score for both the reference and
alternate sequences is reported as REF-ALT, such as
diff/donor/621915-621914/Medium-Medium/7.020731-
6.988368.

Several key=value parameters can be modified in the the plugin
string:

Argume
nt

Description

traini
ng

(mandatory) directory to species-specific training data,
such as GeneSplicer/human

Digest::MD5
qw(md5_hex)

Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/GeneSplicer.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/GeneSplicer.pm
https://ccb.jhu.edu/software/genesplicer/
https://www.ensembl.orgftp//ftp.ccb.jhu.edu/pub/software/genesplicer/GeneSplicer.tar.gz
https://metacpan.org/pod/Digest::MD5

Phenotype
data and
citations

Plugin Description Category External
libraries

Developer

Argume
nt

Description

binary path to genesplicer binary (default: genesplicer)

contex
t

change the amount of sequence added either side of
the variant (default: 100bp)

tmpdir change the temporary directory used (default: /tmp)

cache_
size

change how many sequences' scores are cached in
memory (default: 50)

Example:

--plugin
GeneSplicer,binary=$GS/bin/linux/genesplicer,tr
aining=$GS/human,context=200,tmpdir=/mytmp

When using VEP Docker/Singularity, the binary argument can be
ommitted, as the genesplicer command is exported in the $PATH
variable and is thus automatically detected by the plugin:

--plugin
GeneSplicer,training=$GS/human,context=200,tmpd
ir=/mytmp

Usage examples:

mv GeneSplicer.pm ~/.vep/Plugins
./vep -i variants.vcf --plugin
GeneSplicer,binary=$GS/bin/linux/genesplicer,tr
aining=$GS/human
./vep -i variants.vcf --plugin
GeneSplicer,binary=$GS/bin/linux/genesplicer,tr
aining=$GS/human,context=200,tmpdir=/mytmp

VEP Docker/Singularity: if 'genesplicer' is a
command available in $PATH,
there is no need to specify the location of
the binary
./vep -i variants.vcf --plugin
GeneSplicer,training=$GS/human

Geno2MP A VEP plugin that adds information from Geno2MP, a web-
accessible database of rare variant genotypes linked to phenotypic
information.

Parameters can be set using a key=value system:

Argu
ment

Description

file VCF file containing Geno2MP data

cols colon-delimited list of Geno2MP columns to return from
INFO fields (by default it only returns the column HPO_CT)

url build and return URL to Geno2MP variant page (boolean; 0
by default); the variant location in Geno2MP website is
based on GRCh37 coordinates

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/Geno2MP.pm

Frequency
data

Plugin Description Category External
libraries

Developer

Please cite Geno2MP alongside the VEP if you use this resource:
Geno2MP, NHGRI/NHLBI University of Washington-Center for
Mendelian Genomics (UW-CMG), Seattle, WA (URL:
http://geno2mp.gs.washington.edu [date (month, yr) accessed]).

Usage examples:

cp Geno2MP.pm ${HOME}/.vep/Plugins
./vep -i variations.vcf --plugin
Geno2MP,file=/path/to/Geno2MP/data.vcf.gz

Return more columns from Geno2MP VCF file
./vep -i variations.vcf --plugin
Geno2MP,file=/path/to/Geno2MP/data.vcf.gz,cols=
HPO_CT:FXN:nhomalt_male_aff:nhomalt_male_unaff

Build and return Geno2MP URL based on GRCh37
variant location
./vep -i variations.vcf --plugin
Geno2MP,file=/path/to/Geno2MP/data.vcf.gz,url=1

gnomADc A VEP plugin that retrieves gnomAD annotation from either the
genome or exome coverage files, available here:
https://gnomad.broadinstitute.org/downloads

To download the gnomad coverage file in TSV format: for Assembly
GRCh37: gnomad genomes:

wget https://storage.googleapis.com/gcp-public-
data--
gnomad/release/2.1/coverage/genomes/gnomad.geno
mes.coverage.summary.tsv.bgz --no-check-
certificate

gnomad exomes:

wget https://storage.googleapis.com/gcp-public-
data--
gnomad/release/2.1/coverage/exomes/gnomad.exome
s.coverage.summary.tsv.bgz --no-check-
certificate

for Assembly GRCh38: gnomad genomes:

wget https://storage.googleapis.com/gcp-public-
data--
gnomad/release/3.0.1/coverage/genomes/gnomad.ge
nomes.r3.0.1.coverage.summary.tsv.bgz --no-
check-certificate

Necessary before using the plugin for Assembly GRCh37: The
following steps are necessary to tabix the gnomad genomes
coverage file :

gunzip -c
gnomad.genomes.coverage.summary.tsv.bgz | sed
'1s/.*/#&/' > gnomad.genomes.tabbed.tsv
bgzip gnomad.genomes.tabbed.tsv
tabix -s 1 -b 2 -e 2
gnomad.genomes.tabbed.tsv.gz

File::Spec

File::Basena
me

Stephen
Kazakoff

http://geno2mp.gs.washington.edu/
https://github.com/Ensembl/VEP_plugins/blob/release/114/gnomADc.pm
https://gnomad.broadinstitute.org/downloads
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/genomes/gnomad.genomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1/coverage/exomes/gnomad.exomes.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/3.0.1/coverage/genomes/gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
https://metacpan.org/pod/File::Spec
https://metacpan.org/pod/File::Basename
https://metacpan.org/pod/File::Basename

Phenotype
data and
citations

Plugin Description Category External
libraries

Developer

The following steps are neccessary to tabix the gnomad exomes
coverage file :

gunzip -c
gnomad.exomes.coverage.summary.tsv.bgz | sed
'1s/.*/#&/' > gnomad.exomes.tabbed.tsv
bgzip gnomad.exomes.tabbed.tsv
tabix -s 1 -b 2 -e 2
gnomad.exomes.tabbed.tsv.gz

for Assembly GRCh38: The following steps are necessary to tabix
the gnomad genomes coverage file :

gunzip -c
gnomad.genomes.r3.0.1.coverage.summary.tsv.bgz
| sed '1s/.*/#&/' > gnomad.genomesv3.tabbed.tsv
sed "1s/locus/chr\tpos/; s/:/\t/g"
gnomad.genomesv3.tabbed.tsv >
gnomad.ch.genomesv3.tabbed.tsv
bgzip gnomad.ch.genomesv3.tabbed.tsv
tabix -s 1 -b 2 -e 2
gnomad.ch.genomesv3.tabbed.tsv

This plugin also tries to be backwards compatible with older
versions of the coverage summary files, including releases 2.0.1
and 2.0.2. These releases provide one coverage file per
chromosome and these can be used "as-is" without requiring any
preprocessing.

If you use this plugin, please see the terms and data information:
https://gnomad.broadinstitute.org/terms

You must have the Bio::DB::HTS module or the tabix utility must be
installed in your path to use this plugin.

Usage examples:

mv gnomADc.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
gnomADc,/path/to/gnomad.tsv.gz

GO
Gene Ontology

A VEP plugin that retrieves Gene Ontology (GO) terms associated
with transcripts (e.g. GRCh38) or their translations (e.g. GRCh37)
using custom GFF annotation containing GO terms.

The custom GFF files are automatically created if the input file do
not exist by querying the Ensembl core database, according to
database version, species and assembly used in VEP. Note that
automatic retrieval fails if using the --offline option.

The GFF files containing the GO terms are saved to and loaded
from the working directory by default. To change this, provide a
directory path as an argument:

--plugin GO,dir=${HOME}/go_terms

If your GFF file has a custom name, please provide the filename
directly:

--plugin GO,file=${HOME}/custom_go_terms.gff.gz

The GO terms can also be fetched by gene match (either gene
Ensembl ID or gene symbol) instead:

- Ensembl

https://gnomad.broadinstitute.org/terms
https://github.com/Ensembl/VEP_plugins/blob/release/114/GO.pm

Phenotype
data and
citations

Plugin Description Category External
libraries

Developer

--plugin GO,match=gene
--plugin GO,match=gene_symbol

To create/use a custom GFF file, these programs must be installed
in your path:

The GNU zgrep and GNU sort commands to create the GFF
file.

The tabix and bgzip utilities to create and read the GFF file:
check https://github.com/samtools/htslib.git for installation
instructions.

Alternatively, for compatibility purposes, the plugin allows to use a
remote connection to the Ensembl API by using "remote" as a
parameter. This method retrieves GO terms one by one at both the
transcript and translation level. This is not compatible with any other
parameters:

--plugin GO,remote

Usage examples:

mv GO.pm ~/.vep/Plugins

automatically fetch GFF files with GO terms
and annotate input with GO terms
not compatible with --offline option
./vep -i variations.vcf --plugin GO

set directory used to write and read GFF
files with GO terms
./vep -i variations.vcf --plugin
GO,dir=${HOME}/go_terms

annotate input with GO terms from custom GFF
file
./vep -i variations.vcf --plugin
GO,file=${HOME}/custom_go_terms.gff.gz

annotate input based on gene identifiers
instead of transcripts/translations
./vep -i variations.vcf --plugin GO,match=gene

use remote connection (available for
compatibility purposes)
./vep -i variations.vcf --plugin GO,remote

GWAS A VEP plugin that retrieves relevant NHGRI-EBI GWAS Catalog
data given the file.

This plugin supports both the curated data that is found in the
download section of the NHGRI-EBI GWAS Catalog website and
the summary statistics file. By default the plugin assumes the file
provided is the curated file but you can pass "type=sstate" to say
you want to annotate with a summary statistics file.

Please cite the following publication alongside the VEP if you use
this resource: https://pubmed.ncbi.nlm.nih.gov/30445434/

Pre-requisites:

For curated NHGRI-EBI GWAS Catalog file - GWAS files can be
downloaded from -
https://www.ebi.ac.uk/gwas/api/search/downloads/alternative

Storable
qw(dclone)

File::Basena
me

Ensembl

https://github.com/samtools/htslib.git
https://github.com/Ensembl/VEP_plugins/blob/release/114/GWAS.pm
https://pubmed.ncbi.nlm.nih.gov/30445434/
https://www.ebi.ac.uk/gwas/api/search/downloads/alternative
https://metacpan.org/pod/Storable
https://metacpan.org/pod/File::Basename
https://metacpan.org/pod/File::Basename

HGVS

Plugin Description Category External
libraries

Developer

For summary statistics file - The plugin can process the harmonised
version of the summary statistics file. Which can be downloaded
from the FTP site -
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics

They are under directory with related to their specific GCST id. For
example -
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST0
00001-GCST001000/GCST000028/harmonised/17463246-
GCST000028-EFO_0001360.h.tsv.gz

Please keep the filename format as it is because filename is parsed
to get information.

When run for the first time for either type of file, the plugin will create
a processed file that have genomic locations and indexed and put it
under the --dir location determined by Ensembl VEP. If db=1 option
is used, depending on the file size it might take hour(s) to create the
processed file. Subsequent runs will be faster as the plugin will be
using the already generated processed file. This option is not used
by default and the variant information is generally taken directly
from the file provided.

Options are passed to the plugin as key=value pairs:

Arg
ume
nt

Description

fil
e

(mandatory) Path to GWAS curated or summary statistics
file

typ
e

type of the file. Valid values are "curated" and "sstate"
(summary statistics). Default is "curated".

ver
bos
e

display info level messages. Valid values are 0 or 1. Default
is 0.

db get variant information from Ensembl database during
creation of processed file. Valid values are 0 or 1. Default is
0 (variant information is retrieved from curated file)

Usage examples:

mv GWAS.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
GWAS,file=/FULL_PATH_TO/gwas_catalog_v1.0.2-
associations_e107_r2022-09-14.tsv
./vep -i variations.vcf --plugin
GWAS,type=sstate,file=/FULL_PATH_TO/17463246-
GCST000028-EFO_0001360.h.tsv.gz

HGVSIntronO
ffset

A VEP plugin for the Ensembl Variant Effect Predictor (VEP) that
returns HGVS intron start and end offsets. To be used with --hgvs
option.

Usage examples:

mv HGVSIntronOffset.pm ~/.vep/Plugins
./vep -i variants.vcf --hgvs --plugin
HGVSIntronOffset

- Stephen
Kazakoff

http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST000001-GCST001000/GCST000028/harmonised/17463246-GCST000028-EFO_0001360.h.tsv.gz
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST000001-GCST001000/GCST000028/harmonised/17463246-GCST000028-EFO_0001360.h.tsv.gz
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST000001-GCST001000/GCST000028/harmonised/17463246-GCST000028-EFO_0001360.h.tsv.gz
https://github.com/Ensembl/VEP_plugins/blob/release/114/HGVSIntronOffset.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/HGVSIntronOffset.pm

Functional
effect

Plugin Description Category External
libraries

Developer

IntAct A VEP plugin that retrieves molecular interaction data for variants as
reprted by IntAct database.

Please cite the IntAct publication alongside the VEP if you use this
resource: https://pubmed.ncbi.nlm.nih.gov/24234451/

Pre-requisites:

1. IntAct files can be downloaded from -
https://ftp.ebi.ac.uk/pub/databases/intact/current/various

2. The genomic location mapped file needs to be tabix indexed.
You can do this by following commands -

a) filter, sort and then zip

grep -v -e '^$' -e '^[#\-]' mutation_gc_map.txt
| sed '1s/.*/#&/' | awk -F "\t" 'BEGIN {
OFS="\t"} {if ($2 > $3) {a=$2; $2=$3; $3=a};
print $0 }' | sort -k1,1 -k2,2n -k3,3n | bgzip
> mutation_gc_map.txt.gz

b) create tabix indexed file -

tabix -s 1 -b 2 -e 3 -f mutation_gc_map.txt.gz

3. As you have already noticed, tabix utility must be installed in
your path to use this plugin.

Options are passed to the plugin as key=value pairs:

Argument Description
mapping_fi
le

(mandatory) Path to tabix-indexed genomic
location mapped file

mutation_f
ile

(mandatory) Path to IntAct data file

By default the output will always contain feature_type and
interaction_ac from the IntAct data file. You can also add more fields
using the following key=value options -

Argument Description
feature_ac Set value to 1 to include Feature AC in

the output

feature_short_la
bel

Set value to 1 to include Feature short
label in the output

feature_annotati
on

Set value to 1 to include Feature
annotation in the output

ap_ac Set value to 1 to include Affected protein
AC in the output

interaction_part
icipants

Set value to 1 to include Interaction
participants in the output

pmid Set value to 1 to include PubMedID in the
output

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/IntAct.pm
https://pubmed.ncbi.nlm.nih.gov/24234451/
https://ftp.ebi.ac.uk/pub/databases/intact/current/various

Variant data

Plugin Description Category External
libraries

Developer

There are also two other key=value options for customizing the
output -

Argu
ment

Description

all Set value to 1 to include all the fields

minim
al

Set value to 1 to overwrite default behavior and include
only interaction_ac in the output by default

See what these options mean -
https://www.ebi.ac.uk/intact/download/datasets#mutations

Note that, interaction accession can be used to link to full details on
the interaction website. For example, where the VEP output reports
an interaction_ac of EBI-12501485, the URL would be :

https://www.ebi.ac.uk/intact/details/interaction/EBI-12501485

Usage examples:

mv IntAct.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
IntAct,mutation_file=/FULL_PATH_TO_IntAct_FILE/
mutations.tsv,mapping_file=/FULL_PATH_TO_IntAct
_FILE/mutation_gc_map.txt.gz
./vep -i variations.vcf --plugin
IntAct,mutation_file=/FULL_PATH_TO_IntAct_FILE/
mutations.tsv,mapping_file=/FULL_PATH_TO_IntAct
_FILE/mutation_gc_map.txt.gz,minimal=1

LD
Linkage
Disequilibrium

A VEP plugin that finds variants in linkage disequilibrium with any
overlapping existing variants from the Ensembl variation databases.

You can configure the population used to calculate the r2 value, and
the r2 cutoff used by passing arguments to the plugin via the VEP
command line (separated by commas). This plugin adds a single
new entry to the Extra column with a comma-separated list of linked
variant IDs and the associated r2 values:
LinkedVariants=rs123:0.879,rs234:0.943

If no arguments are supplied, the default population used is the
CEU sample from the 1000 Genomes Project phase 3, and the
default r2 cutoff used is 0.8.

WARNING: Calculating LD is a relatively slow procedure, so this will
slow VEP down considerably when running on large numbers of
variants. Consider running vep followed by filter_vep to get a
smaller input set:

./vep -i input.vcf -cache -vcf -o input_vep.vcf

./filter_vep -i input_vep.vcf -filter
"Consequence is missense_variant" >
input_vep_filtered.vcf
./vep -i input_vep_filtered.vcf -cache -plugin
LD

Usage examples:

mv LD.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
LD,1000GENOMES:phase_3:CEU,0.8
./vep -i variations.vcf --plugin

- Ensembl

https://www.ebi.ac.uk/intact/download/datasets#mutations
https://www.ebi.ac.uk/intact/details/interaction/EBI-12501485
https://github.com/Ensembl/VEP_plugins/blob/release/114/LD.pm

Look up

Gene
tolerance to
change

Plugin Description Category External
libraries

Developer

LD,'populations=1000GENOMES:phase_3:CEU&1000GEN
OMES:phase_3:PUR&1000GENOMES:phase_3:STU',0.8

LocalID The LocalID plugin allows you to use variant IDs as input without
making a database connection.

Requires sqlite3.

A local sqlite3 database is used to look up variant IDs; this is
generated either from Ensembl's public database (very slow, but
includes synonyms), or from a VEP cache file (faster, excludes
synonyms).

NB this plugin is NOT compatible with the ensembl-tools
variant_effect_predictor.pl version of VEP.

Usage examples:

mv LocalID.pm ~/.vep/Plugins

first run create database

EITHER create from Ensembl variation database
VERY slow but includes variant synonyms, if
not required see next command
./vep -i variant_ids.txt --plugin
LocalID,create_db=1 -safe

OR create from cache directory
faster but does not include synonyms
parameter passed to from_cache may be full
path to cache e.g.
$HOME/.vep/homo_sapiens/88_GRCh38
cache may be tabix converted or in default
state
(http://www.ensembl.org/info/docs/tools/vep/scr
ipt/vep_cache.html#convert)
./vep -i variant_ids.txt --plugin
LocalID,create_db=1,from_cache=1 -safe

subsequent runs
./vep -i variant_ids.txt --plugin LocalID

db file can be specified with db=[file]
default file name is
$HOME/.vep/[species]_[version]_[assembly].varia
nt_ids.sqlite3
./vep -i variant_ids.txt --plugin
LocalID,db=my_db_file.txt

- Ensembl

LOEUF This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds the LOEUF scores to VEP output. LOEUF stands for the "loss-
of-function observed/expected upper bound fraction."

The score can be added matching by either transcript or gene.
When matched by gene: If multiple transcripts are available for a
gene, the most severe score is reported.

NB: The plugin currently does not add the score for
downstream_gene_variant and upstream_gene_variant

Please cite the LOEUF publication alongside the VEP if you use this
resource: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334197/

LOEUF scores can be downloaded from GRCh37:
https://gnomad.broadinstitute.org/downloads#v2-constraint (pLoF
Metrics by Gene TSV) GRCh38:

Scalar::Util
qw(looks_like_
number)

Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/LocalID.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/LOEUF.pm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334197/
https://gnomad.broadinstitute.org/downloads#v2-constraint
https://metacpan.org/pod/Scalar::Util

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

https://gnomad.broadinstitute.org/downloads#v4-constraint
(Constraint metrics TSV)

For GRCh37: These files can be tabix-processed by:

zcat gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz
| (head -n 1 && tail -n +2 | sort -t$'\t' -k
76,76 -k 77,77n) > loeuf_temp.tsv
sed '1s/.*/#&/' loeuf_temp.tsv >
loeuf_dataset.tsv
bgzip loeuf_dataset.tsv
tabix -f -s 76 -b 77 -e 78 loeuf_dataset.tsv.gz

For GRCh38: The GRCh38 file does not have gene co-ordinates
information. First you need to add the gene co-ordiates information.
You can use the Ensembl Perl API to create a script and perform
that - https://www.ensembl.org/info/docs/api/core/index.html. After
adding the start and end position of the genes at the last 2 columns
you can process the file as follows:

cat
gnomad.v4.1.constraint_metrics_with_coordinates
.tsv | (head -n 1 && tail -n +2 | sort -t$'\t'
-k 53,53 -k 56,56n) > loeuf_grch38_temp.tsv
sed '1s/.*/#&/' loeuf_grch38_temp.tsv >
loeuf_dataset_grch38.tsv
bgzip loeuf_dataset_grch38.tsv
tabix -f -s 53 -b 56 -e 57
loeuf_dataset_grch38.tsv.gz

The tabix utility must be installed in your path to use this plugin.

Usage examples:

mv LOEUF.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
LOEUF,file=/path/to/loeuf/data.tsv.gz,match_by=
gene
./vep -i variations.vcf --plugin
LOEUF,file=/path/to/loeuf/data.tsv.gz,match_by=
transcript

LoFtool
Loss-of-function

Add LoFtool scores to the VEP output.

LoFtool provides a rank of genic intolerance and consequent
susceptibility to disease based on the ratio of Loss-of-function (LoF)
to synonymous mutations for each gene in 60,706 individuals from
ExAC, adjusting for the gene de novo mutation rate and
evolutionary protein conservation. The lower the LoFtool gene score
percentile the most intolerant is the gene to functional variation. For
more details please see (Fadista J et al. 2017), PMID:27563026.
The authors would like to thank the Exome Aggregation Consortium
and the groups that provided exome variant data for comparison. A
full list of contributing groups can be found at
http://exac.broadinstitute.org/about.

The LoFtool_scores.txt file is found alongside the plugin in the
VEP_plugins GitHub repo.

To use another scores file, add it as a parameter i.e.

./vep -i variants.vcf --plugin
LoFtool,scores_file.txt

DBI Ensembl

https://gnomad.broadinstitute.org/downloads#v2-constraint
https://gnomad.broadinstitute.org/downloads#v4-constraint
https://www.ensembl.org/info/docs/api/core/index.html
https://github.com/Ensembl/VEP_plugins/blob/release/114/LoFtool.pm
http://exac.broadinstitute.org/about
https://metacpan.org/pod/DBI

Variant data

Phenotype
data and
citations

Plugin Description Category External
libraries

Developer

Usage examples:

mv LoFtool.pm ~/.vep/Plugins
mv LoFtool_scores.txt ~/.vep/Plugins
./vep -i variants.vcf --plugin LoFtool

LOVD
Leiden Open
Variation
Database

A VEP plugin that retrieves LOVD variation data from
http://www.lovd.nl/.

Please be aware that LOVD is a public resource of curated variants,
therefore please respect this resource and avoid intensive querying
of their databases using this plugin, as it will impact the availability
of this resource for others.

Usage examples:

mv LOVD.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin LOVD

LWP::UserAge
nt

Ensembl

Mastermind This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
uses the Mastermind Genomic Search Engine
(https://www.genomenon.com/mastermind) to report variants that
have clinical evidence cited in the medical literature. It is available
for both GRCh37 and GRCh38.

Please cite the Mastermind publication alongside the VEP if you use
this resource:
https://www.frontiersin.org/article/10.3389/fgene.2020.577152

Running options: The plugin has multiple parameters, the first one is
expected to be the file name path which can be followed by 3
optional flags. Default: the plugin matches the citation data with the
specific mutation. Using first flag 1: returns the citations for all
mutations/transcripts. Using the second flag 1: only returns the
Mastermind variant identifier(s). Using the third flag 1: also returns
the Mastermind URL.

Output: The output includes three unique counts 'MMCNT1,
MMCNT2, MMCNT3' and one identifier MMID3 to be used to build
an URL which shows all articles from MMCNT3.

MMCNT1 is the count of Mastermind articles with cDNA matches
for a specific variant;

MMCNT2 is the count of Mastermind articles with variants either
explicitly matching at the cDNA level or given only at protein
level;

MMCNT3 is the count of Mastermind articles including other
DNA-level variants resulting in the same amino acid change;

MMID3 is the Mastermind variant identifier(s), as gene:key. Link
to the Genomenon Mastermind Genomic Search Engine;

To build the URL, substitute the gene:key in the following link with
the value from MMID3: https://mastermind.genomenon.com/detail?
mutation=gene:key

If the third flag is used then the built URL is returned and it's
identified by URL.

More information can be found at: https://www.genomenon.com/cvr/

The following steps are necessary before running this plugin:

Download and Registry (free): https://www.genomenon.com/cvr/

GRCh37 VCF:

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/LOVD.pm
http://www.lovd.nl/
https://metacpan.org/pod/LWP::UserAgent
https://metacpan.org/pod/LWP::UserAgent
https://github.com/Ensembl/VEP_plugins/blob/release/114/Mastermind.pm
https://www.genomenon.com/mastermind
https://www.frontiersin.org/article/10.3389/fgene.2020.577152
https://mastermind.genomenon.com/detail?mutation=gene:key
https://mastermind.genomenon.com/detail?mutation=gene:key
https://www.genomenon.com/cvr/
https://www.genomenon.com/cvr/

Plugin Description Category External
libraries

Developer

unzip mastermind_cited_variants_reference-
XXXX.XX.XX-grch37-vcf.zip
bgzip mastermind_cited_variants_reference-
XXXX.XX.XX-GRCh37-vcf
tabix -p vcf
mastermind_cited_variants_reference-
XXXX.XX.XX.GRCh37-vcf.gz

GRCh38 VCF:

unzip mastermind_cited_variants_reference-
XXXX.XX.XX-grch38-vcf.zip
bgzip mastermind_cited_variants_reference-
XXXX.XX.XX-GRCh38-vcf
tabix -p vcf
mastermind_cited_variants_reference-
XXXX.XX.XX.GRCh38-vcf.gz

The plugin can then be run as default:

./vep -i variations.vcf --plugin
Mastermind,file=/path/to/mastermind_cited_varia
nts_reference-XXXX.XX.XX.GRChXX-vcf.gz

or with an option to not filter by mutations (first flag):

./vep -i variations.vcf --plugin
Mastermind,file=/path/to/mastermind_cited_varia
nts_reference-XXXX.XX.XX.GRChXX-
vcf.gz,mutations=1

or with an option to only return MMID3 e.g. the Mastermind variant
identifier as gene:key (second flag):

./vep -i variations.vcf --plugin
Mastermind,file=/path/to/mastermind_cited_varia
nts_reference-XXXX.XX.XX.GRChXX-
vcf.gz,mutations=0,var_iden=1

or with an option to also return the Mastermind URL (third flag):

./vep -i variations.vcf --plugin
Mastermind,file=/path/to/mastermind_cited_varia
nts_reference-XXXX.XX.XX.GRChXX-
vcf.gz,mutations=0,var_iden=0,url=1

Note: when running VEP in offline mode Mastermind requires a
fasta file (--fasta)

Usage examples:

mv Mastermind.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
Mastermind,file=/path/to/data.vcf.gz
./vep -i variations.vcf --plugin
Mastermind,file=/path/to/data.vcf.gz,mutations=
1
./vep -i variations.vcf --plugin
Mastermind,file=/path/to/data.vcf.gz,mutations=
0,var_iden=1
./vep -i variations.vcf --plugin

Functional
effect

Splicing
predictions

Plugin Description Category External
libraries

Developer

Mastermind,file=/path/to/data.vcf.gz,mutations=
0,var_iden=0,url=1

MaveDB A VEP plugin that retrieves data from MaveDB
(https://www.mavedb.org), a database that contains multiplex
assays of variant effect, including deep mutational scans and
massively parallel report assays.

To run the MaveDB plugin, please download the following files
containing MaveDB data for GRCh38 (we do not currently host data
for other assemblies):

https://ftp.ensembl.org/pub/current_variation/MaveDB/MaveDB
_variants.tsv.gz

https://ftp.ensembl.org/pub/current_variation/MaveDB/MaveDB
_variants.tsv.gz.tbi

Options are passed to the plugin as key=value pairs:

Argument Description
file (mandatory) Tabix-indexed MaveDB file

cols Colon-separated columns to print from MaveDB
files; if set to all, all columns are printed (default:
urn:score:nt:pro)

single_ami
noacid_cha
nges

Return matches for single aminoacid changes
only; if disabled, return all matches associated with
a genetic variant (default: 1)

transcript
_match

Return results only if (Ensembl or RefSeq)
transcript identifiers match (default: 1)

Please cite the MaveDB publication alongside the VEP if you use
this resource: https://doi.org/10.1186/s13059-019-1845-6

The tabix utility must be installed in your path to use this plugin.

Usage examples:

mv MaveDB.pm ~/.vep/Plugins

print only scores for single aminoacid
changes from MaveDB data (default)
./vep -i variations.vcf --plugin
MaveDB,file=/full/path/to/data.csv.gz

print all scores associated with the genetic
variant
./vep -i variations.vcf --plugin
MaveDB,file=/full/path/to/data.csv.gz,single_am
inoacid_changes=0

print all columns from MaveDB data
./vep -i variations.vcf --plugin
MaveDB,file=/full/path/to/data.csv.gz,cols=all

Bio::SeqUtil
s

File::Basena
me

Ensembl

MaxEntSca
n

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
runs MaxEntScan
(http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.
html) to get splice site predictions.

Digest::MD5
qw(md5_hex)

Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/MaveDB.pm
https://www.mavedb.org/
https://ftp.ensembl.org/pub/current_variation/MaveDB/MaveDB_variants.tsv.gz
https://ftp.ensembl.org/pub/current_variation/MaveDB/MaveDB_variants.tsv.gz
https://ftp.ensembl.org/pub/current_variation/MaveDB/MaveDB_variants.tsv.gz.tbi
https://ftp.ensembl.org/pub/current_variation/MaveDB/MaveDB_variants.tsv.gz.tbi
https://doi.org/10.1186/s13059-019-1845-6
https://metacpan.org/pod/Bio::SeqUtils
https://metacpan.org/pod/Bio::SeqUtils
https://metacpan.org/pod/File::Basename
https://metacpan.org/pod/File::Basename
https://github.com/Ensembl/VEP_plugins/blob/release/114/MaxEntScan.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/MaxEntScan.pm
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
https://metacpan.org/pod/Digest::MD5

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

The plugin copies most of the code verbatim from the score5.pl and
score3.pl scripts provided in the MaxEntScan download. To run the
plugin you must get and unpack the archive from
http://hollywood.mit.edu/burgelab/maxent/download/; the path to this
unpacked directory is then the param you pass to the --plugin flag.

The plugin executes the logic from one of the scripts depending on
which splice region the variant overlaps:

score5.pl : last 3 bases of exon --> first 6 bases of intron

score3.pl : last 20 bases of intron --> first 3 bases of exon

The plugin reports the reference, alternate and difference (REF -
ALT) maximum entropy scores.

If SWA is specified as a command-line argument, a sliding window
algorithm is applied to subsequences containing the reference and
alternate alleles to identify k-mers with the highest donor and
acceptor splice site scores. To assess the impact of variants,
reference comparison scores are also provided. For SNVs, the
comparison scores are derived from sequence in the same frame as
the highest scoring k-mers containing the alternate allele. For all
other variants, the comparison scores are derived from the highest
scoring k-mers containing the reference allele. The difference
between the reference comparison and alternate scores
(SWA_REF_COMP - SWA_ALT) are also provided.

If NCSS is specified as a command-line argument, scores for the
nearest upstream and downstream canonical splice sites are also
included.

By default, only scores are reported. Add verbose to the list of
command- line arguments to include the sequence output
associated with those scores.

Usage examples:

mv MaxEntScan.pm ~/.vep/Plugins
./vep -i variants.vcf --plugin
MaxEntScan,/path/to/maxentscan/fordownload
./vep -i variants.vcf --plugin
MaxEntScan,/path/to/maxentscan/fordownload,SWA,
NCSS

MPC
missense
deleteriousness
metric

A VEP plugin that retrieves MPC scores for variants from a tabix-
indexed MPC data file.

MPC is a missense deleteriousness metric based on the analysis of
genic regions depleted of missense mutations in the Exome
Agggregation Consortium (ExAC) data.

The MPC score is the product of work by Kaitlin Samocha
(ks20@sanger.ac.uk). Publication currently in pre-print: Samocha et
al bioRxiv 2017 (TBD)

The MPC score file is available to download from:

https://ftp.broadinstitute.org/pub/ExAC_release/release1/regional_m
issense_constraint/

The data are currently mapped to GRCh37 only. Not all transcripts
are included; see README in the above directory for exclusion
criteria.

Usage examples:

- Ensembl

http://hollywood.mit.edu/burgelab/maxent/download/
https://github.com/Ensembl/VEP_plugins/blob/release/114/MPC.pm
https://ftp.broadinstitute.org/pub/ExAC_release/release1/regional_missense_constraint/
https://ftp.broadinstitute.org/pub/ExAC_release/release1/regional_missense_constraint/

Pathogenicity
predictions

Protein
annotation

Plugin Description Category External
libraries

Developer

mv MPC.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
MPC,fordist_constraint_official_mpc_values.txt.
gz

MTR
Missense
Tolerance Ratio

A VEP plugin that retrieves Missense Tolerance Ratio (MTR) scores
for variants from a tabix-indexed flat file.

MTR scores quantify the amount of purifying selection acting
specifically on missense variants in a given window of protein-
coding sequence. It is estimated across a sliding window of 31
codons and uses observed standing variation data from the WES
component of the Exome Aggregation Consortium Database
(ExAC), version 2.0 (http://gnomad.broadinstitute.org).

Please cite the MTR publication alongside the VEP if you use this
resource: http://genome.cshlp.org/content/27/10/1715

The Bio::DB::HTS perl library or tabix utility must be installed in your
path to use this plugin. MTR flat files can be downloaded from
http://biosig.unimelb.edu.au/mtr-viewer/downloads The following
steps are necessary before running the plugin

gzip -d mtrflatfile_2.0.txt.gz # to unzip the
text file
cat mtrflatfile_2.0.txt | tr " " "\t" >
mtrflatfile_2.00.tsv # to change the file to a
tabbed delimited file
sed '1s/.*/#&/' mtrflatfile_2.00.tsv >
mtrflatfile_2.0.tsv # to add # to the first
line of the file
bgzip mtrflatfile_2.0.tsv
tabix -f -s 1 -b 2 -e 2 mtrflatfile_2.0.tsv.gz

NB: Data are available for GRCh37 only

Usage examples:

mv MTR.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
MTR,mtrflatfile_2.0.tsv.gz

- Slave
Petrovski

Michael Silk

mutfunc A VEP plugin that retrieves data from mutfunc db predicting
destabilization of protein structure, interaction interface, and motif.

Please cite the mutfunc publication alongside the VEP if you use
this resource: http://msb.embopress.org/content/14/12/e8430

Pre-requisites:

1. The data file. mutfunc SQLite db can be downloaded from -
https://ftp.ensembl.org/pub/current_variation/mutfunc/mutfunc_
data.db

2. If you are using --offline please provide a FASTA file as this
plugin requires the translation sequence to function.

Options are passed to the plugin as key=value pairs:

Argu
ment

Description

db (mandatory) Path to SQLite database containing data for
other analysis.

List::MoreUti
ls
qw(first_inde
x)

Compress::Z
lib

Digest::MD
5
qw(md5_hex
)

DBI

Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/MTR.pm
http://gnomad.broadinstitute.org/
http://genome.cshlp.org/content/27/10/1715
http://biosig.unimelb.edu.au/mtr-viewer/downloads
https://github.com/Ensembl/VEP_plugins/blob/release/114/mutfunc.pm
http://msb.embopress.org/content/14/12/e8430
https://ftp.ensembl.org/pub/current_variation/mutfunc/mutfunc_data.db
https://ftp.ensembl.org/pub/current_variation/mutfunc/mutfunc_data.db
https://metacpan.org/pod/List::MoreUtils
https://metacpan.org/pod/List::MoreUtils
https://metacpan.org/pod/Compress::Zlib
https://metacpan.org/pod/Compress::Zlib
https://metacpan.org/pod/Digest::MD5
https://metacpan.org/pod/Digest::MD5
https://metacpan.org/pod/DBI

Nearby
features

Nearby
features

Plugin Description Category External
libraries

Developer

Argu
ment

Description

moti
f

Select this option to have mutfunc motif analysis in the
output

int Select this option to have mutfunc protein interection
analysis in the output

mod Select this option to have mutfunc protein structure
analysis in the output

exp Select this option to have mutfunc protein structure
(experimental) analysis in the output

exte
nded

By default mutfunc outputs the most significant field for
any analysis. Select this option to get more verbose
output.

By default all of the four type of analysis (motif, int, mod, and exp)
data are available in the output. But if you want to have some
selected analysis and not all of them just select the relevant options.

Usage examples:

mv mutfunc.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
mutfunc,motif=1,extended=1,db=/FULL_PATH_TO/mut
func_data.db
./vep -i variations.vcf --plugin
mutfunc,db=/FULL_PATH_TO/mutfunc_data.db

NearestExonJ
B

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
finds the nearest exon junction boundary to a coding sequence
variant. More than one boundary may be reported if the boundaries
are equidistant.

The plugin will report the Ensembl identifier of the exon, the
distance to the exon boundary, the boundary type (start or end of
exon) and the total length in nucleotides of the exon.

Various key=value parameters can be altered by passing them to
the plugin command:

Argument Description
max_range maximum search range in bp (default: 10000)

Parameters are passed e.g.:

--plugin NearestExonJB,max_range=50000

Usage examples:

mv NearestExonJB.pm ~/.vep/Plugins
./vep -i variations.vcf --cache --plugin
NearestExonJB

- Ensembl

NearestGen
e

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
finds the nearest gene(s) to a non-genic variant. More than one
gene may be reported if the genes overlap the variant or if genes
are equidistant.

Various key=value parameters can be altered by passing them to
the plugin command:

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/NearestExonJB.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/NearestExonJB.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/NearestGene.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/NearestGene.pm

Protein data

Plugin Description Category External
libraries

Developer

Argument Description
limit limit the number of genes returned (default: 1)

range initial search range in bp (default: 1000)

max_range maximum search range in bp (default: 10000)

Parameters are passed e.g.:

--plugin NearestGene,limit=3,max_range=50000

This plugin requires a database connection. It cannot be run with
VEP in offline mode i.e. using the --offline flag.

Usage examples:

mv NearestGene.pm ~/.vep/Plugins
./vep -i variations.vcf --cache --plugin
NearestGene

neXtProt This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
retrieves data for missense and stop gain variants from neXtProt,
which is a comprehensive human-centric discovery platform that
offers integration of and navigation through protein-related data for
example, variant information, localization and interactions
(https://www.nextprot.org/).

Please cite the neXtProt publication alongside the VEP if you use
this resource: https://doi.org/10.1093/nar/gkz995

This plugin is only suitable for small sets of variants as an additional
individual remote API query is run for each variant.

The neXtProt_headers.txt file is a requirement for running this
plugin and is found alongside the plugin in the VEP_plugins GitHub
repository. The file contains the RDF entities extracted from
https://snorql.nextprot.org/

Running options: (Default) the data retrieved by default is the
MatureProtein, NucleotidePhosphateBindingRegion, Variant,
MiscellaneousRegion, TopologicalDomain and InteractingRegion.
The plugin can also be run with other options to retrieve other data
than the default.

Options are passed to the plugin as key=value pairs:

Argu
ment

Description

max_
set

Set value to 1 to return all available protein-related data
(includes the default data)

retu
rn_v
alue
s

The set of data to be returned with different data separated
by &. Use file neXtProt_headers.txt to check which
data (labels) are available. Example: --plugin
neXtProt,return_values=Domain&InteractingRegion

url Set value to 1 to include the URL to link to the neXtProt
entry.

all_
labe

Set value to 1 to include all labels, even if data is not
available.

JSON::XS Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/neXtProt.pm
https://www.nextprot.org/
https://doi.org/10.1093/nar/gkz995
https://snorql.nextprot.org/
https://metacpan.org/pod/JSON::XS

Transcript
annotation

Plugin Description Category External
libraries

Developer

Argu
ment

Description

ls

posi
tion

Set value to 1 to include the start and end position in the
protein.

(*) note: max_set and return_values cannot be used
simultaneously.

Output: By default, the plugin only returns data that is available.
Example (default behaviour):

neXtProt_MatureProtein=Rho guanine nucleotide
exchange factor 10

The option all_labels returns a consistent set of the requested
fields, using "-" where values are not available. Same example as
above:

neXtProt_MatureProtein=Rho guanine nucleotide
exchange factor 10;
neXtProt_InteractingRegion=-;neXtProt_Nucleotid
ePhosphateBindingRegion=-;neXtProt_Variant=-;
neXtProt_MiscellaneousRegion=-;neXtProt_Topolog
icalDomain=-;

Of notice, multiple values can be returned for the same label. In this
case, the values will be separeted by | for tab and txt format, and &
for VCF format.

N/B: This plugin requires a connection to the Ensembl database,
and can not be used in offline mode.

The plugin can then be run as default:

./vep -i variations.vcf --plugin neXtProt

or to return only the data specified by the user:

./vep -i variations.vcf --plugin
neXtProt,return_values=Domain&InteractingRegion

Usage examples:

mv neXtProt.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin neXtProt
./vep -i variations.vcf --plugin
neXtProt,max_set=1

NMD This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
predicts if a variant allows the transcript escape nonsense-mediated
mRNA decay based on certain rules.

The rules are :

1. The variant location falls in the last exon of the transcript.

 vvvv

ES...EE..I.ES...EE.I.ES....EE.I.ES....EE

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/NMD.pm

Variant data

Plugin Description Category External
libraries

Developer

(ES= exon_start,EE = exon_end, I = intron, v = variant location)

2. The variant location falls 50 bases upstream of the penultimate
(second to the last) exon.

 vvv

ES...EE..I.ES...EE.I.ES....EE.I.ES....EE

(ES= exon_start,EE = exon_end, I = intron, v = variant location)

3. The variant falls in the first 100 coding bases in the transcript.

 vvv

..ES...EE..I.ES...EE.I.ES....EE.I.ES....EE

(ES= exon_start,EE = exon_end, I = intron, v = variant location)

4. If the variant is in an intronless transcript, meaning only one
exon exist in the transcript.

The additional term NMD-escaping variant (nonsense-mediated
mRNA decay escaping variants) will be added if the variant matches
any of the rules.

REFERENCES :

Identifying Genes Whose Mutant Transcripts Cause Dominant
Disease Traits by Potential Gain-of-Function Alleles (Coban-
Akdemir, 2018)

The rules and impact of nonsense-mediated mRNA decay in
human cancers (Lindeboom, 2016)

Usage examples:

mv NMD.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin NMD

OpenTarget
s

A VEP plugin that integrates data from Open Targets Genetics
(https://genetics.opentargets.org), a tool that highlights variant-
centric statistical evidence to allow both prioritisation of candidate
causal variants at trait-associated loci and identification of potential
drug targets.

Data from Open Targets Genetics includes locus-to-gene (L2G)
scores to predict causal genes at GWAS loci.

The tabix utility must be installed in your path to use this plugin. The
Open Targets Genetics file and respective index (TBI) file can be
downloaded from:
https://ftp.ebi.ac.uk/pub/databases/opentargets/genetics/latest/OTG
enetics_VEP

Options are passed to the plugin as key=value pairs:

Argu
ment

Description

file (mandatory) Tabix-indexed file from Open Targets
Genetics

cols (optional) Colon-separated list of columns to return from
the plugin file (default: "l2g:geneId"); use all to print all
data

Bio::SeqUtil
s

File::Basena
me

Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/OpenTargets.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/OpenTargets.pm
https://genetics.opentargets.org/
https://ftp.ebi.ac.uk/pub/databases/opentargets/genetics/latest/OTGenetics_VEP
https://ftp.ebi.ac.uk/pub/databases/opentargets/genetics/latest/OTGenetics_VEP
https://metacpan.org/pod/Bio::SeqUtils
https://metacpan.org/pod/Bio::SeqUtils
https://metacpan.org/pod/File::Basename
https://metacpan.org/pod/File::Basename

Variant data

Plugin Description Category External
libraries

Developer

Please cite the Open Targets Genetics publication alongside the
VEP if you use this resource: https://doi.org/10.1093/nar/gkaa84

Usage examples:

mv OpenTargets.pm ~/.vep/Plugins

print Open Targets Genetics scores and
respective gene identifiers (default)
./vep -i variations.vcf --plugin
OpenTargets,file=path/to/data.tsv.bz

print all information from Open Targets
Genetics
./vep -i variations.vcf --plugin
OpenTargets,file=path/to/data.tsv.bz,cols=all

Paralogues A VEP plugin that fetches variants overlapping the genomic
coordinates of amino acids aligned between paralogue proteins.
This is useful to predict the pathogenicity of variants in paralogue
positions.

This plugin can determine paralogue regions for a variant based on:

1. Pre-computed matches between genomic regions and
paralogue variants. For this approach, either download the file
calculated using ClinVar variants and respective TBI from
https://ftp.ensembl.org/pub/current_variation/Paralogues or
create such matches file yourself. Details on how to create
such matches file can be found below.

2. Ensembl paralogue annotation. These versatile annotations
can look up paralogue regions for all variants from any species
with Ensembl paralogues, but take longer to process.

After retrieving the paralogue regions, this plugin fetches variants
overlapping those regions from one of the following sources (by this
order):

1. Custom VCF via the vcf parameter

2. VEP cache (in cache/offline mode)

3. Ensembl API (in database mode)

To create a matches file based on a custom set of variants, run
VEP using `--plugin
Paralogues,regions=1,min_perc_cov=0,min_perc_pos=0,clnsig=ign
ore` and the --vcf option. Afterwards, process the output of the
VEP command: `perl -e "use Paralogues;
Paralogues::prepare_matches_file(variant_effect_output.tx
t)"`

Options are passed to the plugin as key=value pairs:

Arg
um
ent

Description

ma
tc
he
s

Tabix-indexed TSV file with pre-computed matches between
genomic regions and paralogue variants (fastest method);
this option is incompatible with the paralogues and vcf
options

di
r

Directory with paralogue annotation (the annotation is
created in this folder if the paralogue annotation files do not
exist)

Compress::Z
lib

Bio::SimpleA
lign

File::Spec

List::Util
qw(any)

File::Basena
me

Ensembl

https://doi.org/10.1093/nar/gkaa84
https://github.com/Ensembl/VEP_plugins/blob/release/114/Paralogues.pm
https://ftp.ensembl.org/pub/current_variation/Paralogues
https://metacpan.org/pod/Compress::Zlib
https://metacpan.org/pod/Compress::Zlib
https://metacpan.org/pod/Bio::SimpleAlign
https://metacpan.org/pod/Bio::SimpleAlign
https://metacpan.org/pod/File::Spec
https://metacpan.org/pod/List::Util
https://metacpan.org/pod/File::Basename
https://metacpan.org/pod/File::Basename

Plugin Description Category External
libraries

Developer

Arg
um
ent

Description

pa
ra
lo
gu
es

Tabix-indexed TSV file with paralogue annotation (if the file
does not exist, the annotation is automatically created); if set
to remote, the annotation is fetched but not stored

vc
f

Tabix-indexed VCF file to fetch variant information (if not
used, variants are fetched from VEP cache in cache/offline
mode or Ensembl API in database mode)

fi
el
ds

Colon-separated list of information from paralogue variants
to output (default:
identifier:alleles:clinical_significance);
keyword all can be used to print all fields; available fields
include identifier, chromosome, start, alleles,
perc_cov, perc_pos, and clinical_significance (if
clnsig_col is defined for custom VCF); additional fields
are available depending on variant source:

VEP cache: end and strand

Ensembl API: end, strand, source, consequence
and gene_symbol

Custom VCF: quality, filter and name of INFO
fields

Matches file: check column names in file header

cl
ns
ig

Clinical significance term to filter variants (default:
pathogenic); use ignore to fetch all paralogue variants,
regardless of clinical significance

cl
ns
ig
_m
at
ch

Type of match when filtering variants based on option
clnsig: partial (default), exact or regex

cl
ns
ig
_c
ol

Column name containing clinical significance in custom VCF
(required with vcf option and if clnsig is not ignore)

mi
n_
pe
rc
_c
ov

Minimum alignment percentage of the peptide associated
with the input variant (default: 0)

mi
n_
pe
rc
_p
os

Minimum percentage of positivity (similarity) between both
homologues (default: 50)

Plugin Description Category External
libraries

Developer

Arg
um
ent

Description

re
gi
on
s

Boolean value to return regions used to look up paralogue

 variants (default: 1)

The tabix utility must be installed in your path to read the paralogue
annotation, the custom VCF file and the matches file.

Usage examples:

mv Paralogues.pm ~/.vep/Plugins

Find paralogue regions of all input variants
using Ensembl paralogue annotation
(automatically created if not in current
directory) and fetch variants within
those regions from VEP cache and whose
clinical significance partially
matches 'pathogenic'
./vep -i variations.vcf --cache --plugin
Paralogues

Find paralogue regions of input variants
using Ensembl paralogue annotation
(automatically created if not in current
directory) and fetch variants within
those regions from a custom VCF file
(regardless of their clinical significance)
./vep -i variations.vcf --cache --plugin
Paralogues,vcf=/path/to/file.vcf,clnsig=ignore

Same using a custom VCF file but filtering
for 'pathogenic' variants
./vep -i variations.vcf --cache --plugin
Paralogues,vcf=/path/to/file.vcf,clnsig_col=CLN
SIG

Same but output different fields
./vep -i variations.vcf --cache --plugin
Paralogues,vcf=/path/to/file.vcf.gz,clnsig_col=
CLNSIG,fields=identifier:alleles:CLNSIG:CLNVI:G
ENEINFO

Use a file with regions matched to paralogue
variants -- fastest method;
download 'matches' files from
https://ftp.ensembl.org/pub/current_variation/P
aralogues
./vep -i variations.vcf --cache --plugin
Paralogues,matches=Paralogues.pm_homo_sapiens_1
13_GRCh38_clinvar_20240107.tsv.gz,clnsig=ignore

Same using a 'matches' file but filtering for
'pathogenic' variants (default)
./vep -i variations.vcf --cache --plugin
Paralogues,matches=Paralogues.pm_homo_sapiens_1
13_GRCh38_clinvar_20240107.tsv.gz

Fetch all Ensembl variants in paralogue
proteins using only the Ensembl API
(requires database access)

Phenotype
data and
citations

Phenotype
data and
citations

Plugin Description Category External
libraries

Developer

./vep -i variations.vcf --database --plugin
Paralogues,mode=remote,clnsig=ignore

PhenotypeOrt
hologous

A VEP plugin that retrieves phenotype information associated with
orthologous genes from model organisms.

The plugin annotates human variants and reports orthologous
information from rat and mouse. The plugin is only available for
GRCh38.

The PhenotypeOrthologous file can be downloaded from
https://ftp.ensembl.org/pub/current_variation/PhenotypeOrthologous

The plugin can be run:

./vep -i variations.vcf --plugin
PhenotypeOrthologous,file=PhenotypesOrthologous
_homo_sapiens_112_GRCh38.gff3.gz

The file option is mandatory to run this plugin

To return only results for rat :

./vep -i variations.vcf --plugin
PhenotypeOrthologous,file=PhenotypesOrthologous
_homo_sapiens_112_GRCh38.gff3.gz,model=rat

To return only results for mouse:

./vep -i variations.vcf --plugin
PhenotypeOrthologous,file=PhenotypesOrthologous
_homo_sapiens_112_GRCh38.gff3.gz,model=mouse

The tabix utility must be installed in your path to use this plugin.
Check https://github.com/samtools/htslib.git for instructions.

Usage examples:

mv PhenotypeOrthologous.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
PhenotypeOrthologous,file=PhenotypesOrthologous
_homo_sapiens_112_GRCh38.gff3.gz

- Ensembl

Phenotypes A VEP plugin that retrieves overlapping phenotype information.

On the first run for each new version/species/assembly will
download a GFF-format dump to ~/.vep/Plugins/

Ensembl provides phenotype annotations mapped to a number of
genomic feature types, including genes, variants and QTLs.

This plugin is best used with JSON output format; the output will be
more verbose and include all available phenotype annotation data
and metadata.

For other output formats, only a concatenated list of phenotype
description strings is returned.

Several paramters can be set using a key=value system:

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/PhenotypeOrthologous.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/PhenotypeOrthologous.pm
https://ftp.ensembl.org/pub/current_variation/PhenotypeOrthologous
https://github.com/samtools/htslib.git
https://github.com/Ensembl/VEP_plugins/blob/release/114/Phenotypes.pm

Plugin Description Category External
libraries

Developer

Arg
um
ent

Description

dir Path to directory where to look for phenotypes annotation. If
the required file does not exist, the file is downloaded and
saved in the provided directory (download requires using
database or cache mode).

fil
e

File path to phenotypes annotation. If the file does not exist,
the file is downloaded and saved with this name (download
requires using database or cache mode).

exclude_sources: &-separated list of phenotype sources to exclude.
By default, HGMD-PUBLIC and COSMIC annotations are excluded.
See
http://www.ensembl.org/info/genome/variation/phenotype/sources_p
henotype_documentation.html

include_sources: &-separated list of phenotype sources to include.
If defined, exclude_sources is ignored.

exclude_types : &-separated list of feature types to exclude: Gene,
Variation, QTL, StructuralVariation, SupportingStructuralVariation,
RegulatoryFeature. By default, StructuralVariation and
SupportingStructuralVariation annotations are always excluded (due
to size issues) and Variation is excluded when annotating structural
variants; to get these annotations in all cases, use
include_types=StructuralVariation&SupportingStructuralVariation&V
ariation

include_types : &-separated list of feature types to include. If
defined, exclude_types is ignored.

expand_right : Cache size in bp. By default, annotations 100000bp
(100kb) downstream of the initial lookup are cached.

phenotype_feature : Boolean to report the gene/variation associated
with the phenotype (such as overlapping gene or structural

 variation) and annotation
source (default: 0)

cols : &-separated list of column and/or attribute names to output
from the gff file. The output fields will be ordered in the same way
given in cols argument. (default: phenotype or
source,phenotype,id if you set phenotype_feature=1)

id_match : Return results only if the identifiers matches with the

 variant or the gene depending
on the type (default: 0)

Example:

--plugin
Phenotypes,file=${HOME}/phenotypes.gff.gz,inclu
de_types=Gene
--plugin
Phenotypes,dir=${HOME},include_types=Gene

Usage examples:

mv Phenotypes.pm ~/.vep/Plugins

http://www.ensembl.org/info/genome/variation/phenotype/sources_phenotype_documentation.html
http://www.ensembl.org/info/genome/variation/phenotype/sources_phenotype_documentation.html

Gene
tolerance to
change

Plugin Description Category External
libraries

Developer

Automatically download phenotype annotation
files if needed and annotate
variants with phenotypes
./vep -i variations.vcf --plugin Phenotypes

Fetch only gene-associated phenotypes
./vep -i variations.vcf --plugin
Phenotypes,include_types=Gene

Set directory with phenotypes annotations
(phenotype annotation file is
automatically downloaded if not available in
this directory)
./vep -i variations.vcf --plugin
Phenotypes,dir=${HOME},include_types=Gene

Specify a file with phenotypes annotation
(file is automatically
downloaded and saved with this name if it
does not exist)
./vep -i variations.vcf --plugin
Phenotypes,file=${HOME}/phenotypes.gff.gz,inclu
de_types=Gene

pLI A VEP plugin that adds the probabililty of a gene being loss-of-
function intolerant (pLI) to the VEP output.

Lek et al. (2016) estimated pLI using the expectation-maximization
(EM) algorithm and data from 60,706 individuals from ExAC
(http://exac.broadinstitute.org). The closer pLI is to 1, the more likely
the gene is loss-of-function (LoF) intolerant.

Note: the pLI was calculated using a representative transcript and is
reported by gene in the plugin.

The data for the plugin is provided by Kaitlin Samocha and Daniel
MacArthur. See https://www.ncbi.nlm.nih.gov/pubmed/27535533 for
a description of the dataset and analysis.

The pLI_values.txt file is found alongside the plugin in the
VEP_plugins GitHub repository. The file contains the fields gene
and pLI extracted from the file at

https://ftp.broadinstitute.org/pub/ExAC_release/release0.3/functiona
l_gene_constraint/fordist_cleaned_exac_r03_march16_z_pli_rec_n
ull_data.txt

From this file, extract gene or transcipt pLI scores: To extract gene
scores :

awk '{print $2, $20 }'
fordist_cleaned_exac_r03_march16_z_pli_rec_null
_data.txt > plI_gene.txt

NB: The gene scores file can also be found in the VEP_plugins
directory.

To extract transcript scores:

awk '{print $1, $20 }'
fordist_cleaned_exac_r03_march16_z_pli_rec_null
_data.txt > plI_transcript.txt

NB: Using this file, No transcript score will be returned.

To use another values file, add it as a parameter i.e.

List::MoreUti
ls qw/zip/

DBI

Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/pLI.pm
http://exac.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/pubmed/27535533
https://ftp.broadinstitute.org/pub/ExAC_release/release0.3/functional_gene_constraint/fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt
https://ftp.broadinstitute.org/pub/ExAC_release/release0.3/functional_gene_constraint/fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt
https://ftp.broadinstitute.org/pub/ExAC_release/release0.3/functional_gene_constraint/fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt
https://metacpan.org/pod/List::MoreUtils
https://metacpan.org/pod/List::MoreUtils
https://metacpan.org/pod/DBI

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

./vep -i variants.vcf --plugin
pLI,values_file.txt
./vep -i variants.vcf --plugin
pLI,values_file.txt,transcript # to check for
the transcript score.

gnomAD v4 release expanded the scale of pLI score calculation.
The file can be downloaded from -
https://gnomad.broadinstitute.org/downloads#v4-constraint
(Constraint metrics TSV) To use the data you can follow the same
procedure as above but needs to change the column number to
accordingly.

Usage examples:

mv pLI.pm ~/.vep/Plugins
mv pLI_values.txt ~/.vep/Plugins
./vep -i variants.vcf --plugin pLI

PolyPhen_SIF
T

A VEP plugin that retrieves PolyPhen and SIFT predictions from a
locally constructed SQLite database. It can be used when your main
source of VEP transcript annotation (e.g. a GFF file or GFF-based
cache) does not contain these predictions.

You must create a SQLite database of the predictions or point to the
SQLite database file already created. Compatible SQLite databases
based on pangenome data are available at
http://ftp.ensembl.org/pub/current_variation/pangenomes

You may point to the file by adding parameter db=[file]. If the file
is not in HOME/.vep, you can also use parameter dir=[dir] to
indicate its path.

--plugin PolyPhen_SIFT,db=[file]
--plugin PolyPhen_SIFT,db=[file],dir=[dir]

To create a SQLite database using PolyPhen/SIFT data from the
Ensembl database, you must have an active database connection
(i.e. not using --offline) and add parameter create_db=1. This
will create a SQLite file named [species].PolyPhen_SIFT.db,
placed in the directory specified by the dir parameter:

--plugin PolyPhen_SIFT,create_db=1
--plugin
PolyPhen_SIFT,create_db=1,dir=/some/specific/di
rectory

*** NB: this will take some hours! ***

When creating a PolyPhen_SIFT by simply using create_db=1,
you do not need to specify any parameters to load the appropriate
file based on the species:

--plugin PolyPhen_SIFT

Usage examples:

mv PolyPhen_SIFT.pm ~/.vep/Plugins

Read default PolyPhen/SIFT SQLite file in
$HOME/.vep
./vep -i variations.vcf -cache --plugin
PolyPhen_SIFT

Digest::MD
5
qw(md5_hex
)

DBI

Ensembl

https://gnomad.broadinstitute.org/downloads#v4-constraint
https://github.com/Ensembl/VEP_plugins/blob/release/114/PolyPhen_SIFT.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/PolyPhen_SIFT.pm
http://ftp.ensembl.org/pub/current_variation/pangenomes
https://metacpan.org/pod/Digest::MD5
https://metacpan.org/pod/Digest::MD5
https://metacpan.org/pod/DBI

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

Read database with custom name and/or located
in a custom directory
./vep -i variations.vcf -cache --plugin
PolyPhen_SIFT,db=custom.db
./vep -i variations.vcf -cache --plugin
PolyPhen_SIFT,dir=/some/custom/dir
./vep -i variations.vcf -cache --plugin
PolyPhen_SIFT,db=custom.db,dir=/some/custom/dir

Create PolyPhen/SIFT SQLite file based on
Ensembl database
./vep -i variations.vcf -cache --plugin
PolyPhen_SIFT,create_db=1

PON_P2 This plugin for Ensembl Variant Effect Predictor (VEP) computes the
predictions of PON-P2 for amino acid substitutions in human
proteins.

PON-P2 is developed and maintained by Protein Structure and
Bioinformatics Group at Lund University and is available at
http://structure.bmc.lu.se/PON-P2/.

If you use this data, please cite the following publication Niroula, A.,
Vihinen, M. Harmful somatic amino acid substitutions affect key
pathways in cancers. BMC Med Genomics 8, 53 (2015).
https://doi.org/10.1186/s12920-015-0125-x

There are two ways to run the plugin:

1. To compute the predictions from the PON-P2 API, use python
script ponp2.py (*) and select the reference genome
(acceptable values are: hg37 and hg38):

--plugin
PON_P2,pyscript=/path/to/python/script/ponp2
.py,hg=hg37

(*) To run this mode, you will require a python script and its
dependencies (Python, python suds). The python file can be
downloaded from http://structure.bmc.lu.se/PON-P2/vep.html/
and the complete path to this file must be supplied while using
this plugin.

2. To fetch the predictions from a file containing pre-calculated
predictions for somatic variations please use the following
key=value option (only available for GRCh37):

Argu
ment

Description

file COSMIC text file with pre-calculated predictions
downloaded from http://structure.bmc.lu.se/PON-
P2/cancer30.html/

The following steps are necessary before using the file:

(head -n 1 COSMIC.txt && tail -n +2
COSMIC.txt | sort -t $'\t' -k1,1 -k2,2n) >
cosmic_sorted.txt
sed -i 's/Chromosome/#Chromosome/'
cosmic_sorted.txt
bgzip cosmic_sorted.txt
tabix -s 1 -b 2 -e 2 cosmic_sorted.txt.gz

- Abhishek
Niroula

Mauno
Vihinen

https://github.com/Ensembl/VEP_plugins/blob/release/114/PON_P2.pm
http://structure.bmc.lu.se/PON-P2/
https://doi.org/10.1186/s12920-015-0125-x
http://structure.bmc.lu.se/PON-P2/vep.html/
http://structure.bmc.lu.se/PON-P2/cancer30.html/
http://structure.bmc.lu.se/PON-P2/cancer30.html/

Phenotype
data and
citations

Plugin Description Category External
libraries

Developer

--plugin
PON_P2,file=path/to/cosmic_sorted.txt.gz

Usage examples:

mv PON_P2.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
PON_P2,pyscript=/path/to/python/script/ponp2.py
,hg=hg37

PostGAP A VEP plugin that retrieves data for variants from a tabix-indexed
PostGAP file (1-based file).

Please refer to the PostGAP github and wiki for more information:
https://github.com/Ensembl/postgap
https://github.com/Ensembl/postgap/wiki
https://github.com/Ensembl/postgap/wiki/algorithm-pseudo-code

The Bio::DB::HTS perl library or tabix utility must be installed in your
path to use this plugin. The PostGAP data file can be downloaded
from https://storage.googleapis.com/postgap-data.

The file must be processed and indexed by tabix before use by this
plugin. PostGAP has coordinates for both GRCh38 and GRCh37;
the file must be processed differently according to the assembly you
use.

wget https://storage.googleapis.com/postgap-
data/postgap.txt.gz
gunzip postgap.txt.gz

GRCh38

(grep ^"ld_snp_rsID" postgap.txt; grep -v
^"ld_snp_rsID" postgap.txt | sort -k4,4 -k5,5n
) | bgzip > postgap_GRCh38.txt.gz
tabix -s 4 -b 5 -e 5 -c l postgap_GRCh38.txt.gz

GRCh37

(grep ^"ld_snp_rsID" postgap.txt; grep -v
^"ld_snp_rsID" postgap.txt | sort -k2,2 -k3,3n
) | bgzip > postgap_GRCh37.txt.gz
tabix -s 2 -b 3 -e 3 -c l postgap_GRCh37.txt.gz

Note that in the last command we tell tabix that the header line
starts with "l"; this may change to the default of "#" in future versions
of PostGAP.

When running the plugin by default disease_efo_id,
disease_name, gene_id and score information is returned e.g.

--plugin POSTGAP,/path/to/PostGap.gz

You may include all columns with ALL; this fetches a large amount
of data per variant!:

--plugin POSTGAP,/path/to/PostGap.gz,ALL

You may want to select only a specific subset of additional
information to be reported, you can do this by specifying the
columns as parameters to the plugin e.g.

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/PostGAP.pm
https://github.com/Ensembl/postgap
https://github.com/Ensembl/postgap/wiki
https://github.com/Ensembl/postgap/wiki/algorithm-pseudo-code
https://storage.googleapis.com/postgap-data
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz
https://storage.googleapis.com/postgap-data/postgap.txt.gz

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

--plugin
POSTGAP,/path/to/PostGap.gz,gwas_pmid,gwas_size

If a requested column is not found, the error message will report the
complete list of available columns in the POSTGAP file. For a brief
description of the available information please refer to the 'How do I
use POSTGAP output?' section in the POSTGAP wiki.

Tabix also allows the data file to be hosted on a remote server. This
plugin is fully compatible with such a setup - simply use the URL of
the remote file:

--plugin
PostGAP,http://my.files.com/postgap.txt.gz

Note that gene sequences referred to in PostGAP may be out of
sync with those in the latest release of Ensembl; this may lead to
discrepancies with scores retrieved from other sources.

Usage examples:

mv PostGAP.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
PostGAP,/path/to/PostGap.gz,col1,col2

PrimateAI The PrimateAI VEP plugin is designed to retrieve clinical impact
scores of variants, as described in
https://www.nature.com/articles/s41588-018-0167-z. Please
consider citing the paper if using this plugin.

In brief, common missense mutations in non-human primate
species are usually benign in humans. Thousands of common
variants from six non-human primate species were used to train a
deep neural network to identify pathogenic mutations in humans
with a rare disease.

This plugin uses files generated by the PrimateAI software, which is
available from https://github.com/Illumina/PrimateAI. The files
containing predicted pathogenicity scores can be downloaded from
https://basespace.illumina.com/s/yYGFdGih1rXL (a free BaseSpace
account may be required): PrimateAI_scores_v0.2.tsv.gz (for
GRCh37/hg19) PrimateAI_scores_v0.2_hg38.tsv.gz (for
GRCh38/hg38)

Before running the plugin for the first time, the following steps must
be taken to format the downloaded files:

1. Unzip the score files

2. Add '#' in front of the column description line

3. Remove any empty lines.

4. Sort the file by chromosome and position

5. Compress the file in .bgz format

6. Create tabix index (requires tabix to be installed).

Command line examples for formatting input files:

gunzip -cf PrimateAI_scores_v0.2.tsv.gz | sed
'12s/.*/#&/' | sed '/^$/d' | awk 'NR<12{print
$0;next}{print $0 | "sort -k1,1 -k 2,2n -V"}' |
bgzip >
PrimateAI_scores_v0.2_GRCh37_sorted.tsv.bgz

- Ensembl

http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
http://my.files.com/postgap.txt.gz
https://github.com/Ensembl/VEP_plugins/blob/release/114/PrimateAI.pm
https://www.nature.com/articles/s41588-018-0167-z
https://github.com/Illumina/PrimateAI
https://basespace.illumina.com/s/yYGFdGih1rXL

Sequence

Sequence

Plugin Description Category External
libraries

Developer

tabix -s 1 -b 2 -e 2
PrimateAI_scores_v0.2_GRCh37_sorted.tsv.bgz

gunzip -cf PrimateAI_scores_v0.2_hg38.tsv.gz |
sed '12s/.*/#&/' | sed '/^$/d' | awk
'NR<12{print $0;next}{print $0 | "sort -k1,1 -k
2,2n -V"}' | bgzip >
PrimateAI_scores_v0.2_GRCh38_sorted.tsv.bgz
tabix -s 1 -b 2 -e 2
PrimateAI_scores_v0.2_GRCh38_sorted.tsv.bgz

Usage examples:

mv PrimateAI.pm ~/.vep/Plugins

./vep -i variations.vcf --plugin
PrimateAI,PrimateAI_scores_v0.2_GRCh37_sorted.t
sv.bgz
./vep -i variations.vcf --plugin
PrimateAI,PrimateAI_scores_v0.2_GRCh38_sorted.t
sv.bgz

ProteinSeq
s

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
prints out the reference and mutated protein sequences of any
proteins found with non-synonymous mutations in the input file.

You should supply the name of file where you want to store the
reference protein sequences as the first argument, and a file to
store the mutated sequences as the second argument.

Note that, for simplicity, where stop codons are gained the plugin
simply substitutes a '*' into the sequence and does not truncate the
protein. Where a stop codon is lost any new amino acids encoded
by the mutation are appended to the sequence, but the plugin does
not attempt to translate until the next downstream stop codon. Also,
the protein sequence resulting from each mutation is printed
separately, no attempt is made to apply multiple mutations to the
same protein.

Usage examples:

mv ProteinSeqs.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
ProteinSeqs,reference.fa,mutated.fa
./vep -i variations.vcf --plugin
ProteinSeqs,reference=reference.fa,mutated=muta
ted.fa

- Ensembl

ReferenceQu
ality

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
reports on the quality of the reference genome using GRC data at
the location of your variants. More information can be found at:
https://www.ncbi.nlm.nih.gov/grc/human/issues

The following steps are necessary before running this plugin:

GRCh38:

wget
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/
GRCh38/MISC/annotated_clone_assembly_problems_G
CF_000001405.38.gff3
wget
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/ProteinSeqs.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/ProteinSeqs.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/ReferenceQuality.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/ReferenceQuality.pm
https://www.ncbi.nlm.nih.gov/grc/human/issues
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh38/MISC/annotated_clone_assembly_problems_GCF_000001405.38.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

Issue_Mapping/GRCh38.p12_issues.gff3
cat
annotated_clone_assembly_problems_GCF_000001405
.38.gff3 GRCh38.p12_issues.gff3 >
GRCh38_quality_mergedfile.gff3
sort -k 1,1 -k 4,4n -k 5,5n
GRCh38_quality_mergedfile.gff3 >
sorted_GRCh38_quality_mergedfile.gff3
bgzip sorted_GRCh38_quality_mergedfile.gff3
tabix -p gff
sorted_GRCh38_quality_mergedfile.gff3.gz

The plugin can then be run with:

./vep -i variations.vcf --plugin
ReferenceQuality,sorted_GRCh38_quality_mergedfi
le.gff3.gz

GRCh37:

wget
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/
GRCh37/MISC/annotated_clone_assembly_problems_G
CF_000001405.25.gff3
wget
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/
Issue_Mapping/GRCh37.p13_issues.gff3
cat
annotated_clone_assembly_problems_GCF_000001405
.25.gff3 GRCh37.p13_issues.gff3 >
GRCh37_quality_mergedfile.gff3
sort -k 1,1 -k 4,4n -k 5,5n
GRCh37_quality_mergedfile.gff3 >
sorted_GRCh37_quality_mergedfile.gff3
bgzip sorted_GRCh37_quality_mergedfile.gff3
tabix -p gff
sorted_GRCh37_quality_mergedfile.gff3.gz

The plugin can then be run with:

./vep -i variations.vcf --plugin
ReferenceQuality,sorted_GRCh37_quality_mergedfi
le.gff3.gz

The tabix utility must be installed in your path to use this plugin.

Usage examples:

mv ReferenceQuality.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
ReferenceQuality,/path/to/data.gff3.gz

REVEL This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds the REVEL score for missense variants to VEP output.

Please cite the REVEL publication alongside the VEP if you use this
resource: https://www.ncbi.nlm.nih.gov/pubmed/27666373

Running options: If available, the plugin will match the scores by
transcript id (default). Using the flag 1 the plugin will not try to match
by transcript id.

REVEL scores can be downloaded from:
https://sites.google.com/site/revelgenomics/downloads

- Ensembl

https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh38.p12_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/GRCh37/MISC/annotated_clone_assembly_problems_GCF_000001405.25.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://ftp.ncbi.nlm.nih.gov/pub/grc/human/GRC/Issue_Mapping/GRCh37.p13_issues.gff3
https://github.com/Ensembl/VEP_plugins/blob/release/114/REVEL.pm
https://www.ncbi.nlm.nih.gov/pubmed/27666373
https://sites.google.com/site/revelgenomics/downloads

Transcript
annotation

Plugin Description Category External
libraries

Developer

The plugin supports several REVEL file versions:

REVEL file version Dec 2017, which has 7 columns and only
GRCh37 coordinates

REVEL file version Feb 2020, which has 8 columns with
GRCh37 and GRCh38 coordinates

REVEL file version May 2021, which has 9 columns with
GRCh37 and GRCh38 coordinates and a new column with
transcript ids

These files can be tabix-processed by:

unzip revel-v1.3_all_chromosomes.zip
cat revel_with_transcript_ids | tr "," "\t" >
tabbed_revel.tsv
sed '1s/.*/#&/' tabbed_revel.tsv >
new_tabbed_revel.tsv
bgzip new_tabbed_revel.tsv

for GRCh37:

tabix -f -s 1 -b 2 -e 2 new_tabbed_revel.tsv.gz

for GRCh38:

zcat new_tabbed_revel.tsv.gz | head -n1 > h
zgrep -h -v ^#chr new_tabbed_revel.tsv.gz | awk
'$3 != "." ' | sort -k1,1 -k3,3n - | cat h - |
bgzip -c > new_tabbed_revel_grch38.tsv.gz
tabix -f -s 1 -b 3 -e 3
new_tabbed_revel_grch38.tsv.gz

The plugin can then be run as default:

./vep -i variations.vcf --assembly GRCh38 --
plugin REVEL,file=/path/to/revel/data.tsv.gz

or with the option to not match by transcript id:

./vep -i variations.vcf --assembly GRCh38 --
plugin
REVEL,file=/path/to/revel/data.tsv.gz,no_match=
1

Requirements: The tabix utility must be installed in your path to use
this plugin. The --assembly flag is required to use this plugin.

Usage examples:

mv REVEL.pm ~/.vep/Plugins
./vep -i variations.vcf --assembly GRCh37 --
plugin REVEL,file=/path/to/revel/data.tsv.gz
./vep -i variations.vcf --assembly GRCh38 --
plugin REVEL,file=/path/to/revel/data.tsv.gz

RiboseqORF
s

This is a VEP plugin that uses a standardized catalog of human
Ribo-seq ORFs to re-calculate consequences for variants located in
these translated regions.

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/RiboseqORFs.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/RiboseqORFs.pm

Variant data

Phenotype
data and
citations

Plugin Description Category External
libraries

Developer

This plugin reports new consequences based on the evidence from
the Ribo-seq ORF annotation and supporting publications. The
human Ribo-seq ORF data can be downloaded from:
https://ftp.ebi.ac.uk/pub/databases/gencode/riboseq_orfs/data

After downloading the annotation, please bgzip and tabix it:

bgzip Ribo-seq_ORFs.bed
tabix Ribo-seq_ORFs.bed.gz

For optimal performance when running this plugin in VEP, please
use a FASTA file (--fasta). A FASTA file is always required in
offline mode.

Please cite the publication for the Ribo-seq ORF annotation
alongside the VEP if you use this resource:
https://doi.org/10.1038/s41587-022-01369-0

The tabix utility must be installed in your path to use this plugin.

Usage examples:

./vep -i variations.vcf --plugin
RiboseqORFs,file=/path/to/Ribo-seq_ORFs.bed.gz

SameCodo
n

A VEP plugin that reports existing variants that fall in the same
codon. This plugin requires a database connection, can not be run
in offline mode

Usage examples:

mv SameCodon.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin SameCodon

- Ensembl

satMutMPR
A

A VEP plugin that retrieves data for variants from a tabix-indexed
satMutMPRA file (1-based file). The saturation mutagenesis-based
massively parallel reporter assays (satMutMPRA) measures variant
effects on gene RNA expression for 21 regulatory elements (11
enhancers, 10 promoters).

The 20 disease-associated regulatory elements and one
ultraconserved enhancer analysed in different cell lines are the
following:

ten promoters (of TERT, LDLR, HBB, HBG, HNF4A, MSMB,
PKLR, F9, FOXE1 and GP1BB) and

ten enhancers (of SORT1, ZRS, BCL11A, IRF4, IRF6, MYC
(2x), RET, TCF7L2 and ZFAND3) and

one ultraconserved enhancer (UC88).

Please refer to the satMutMPRA web server and Kircher M et al.
(2019) paper for more information:
https://mpra.gs.washington.edu/satMutMPRA/
https://www.ncbi.nlm.nih.gov/pubmed/31395865

Parameters can be set using a key=value system:

Argu
ment

Description

file required - a tabix indexed file of the satMutMPRA data
corresponding to desired assembly.

- Ensembl

https://ftp.ebi.ac.uk/pub/databases/gencode/riboseq_orfs/data
https://doi.org/10.1038/s41587-022-01369-0
https://github.com/Ensembl/VEP_plugins/blob/release/114/SameCodon.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/SameCodon.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/satMutMPRA.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/satMutMPRA.pm
https://mpra.gs.washington.edu/satMutMPRA/
https://www.ncbi.nlm.nih.gov/pubmed/31395865

Plugin Description Category External
libraries

Developer

Argu
ment

Description

pval
ue

p-value threshold (default: 0.00001)

cols colon delimited list of data types to be returned from the
satMutMPRA data (default: Value, P-Value, and
Element)

incl
_rep
l

include replicates (default: off):

full replicate for LDLR promoter (LDLR.2) and SORT1
enhancer (SORT1.2)

a reversed sequence orientation for SORT1 (SORT1-
flip)

other conditions: PKLR-48h, ZRSh-13h2, TERT-GAa,
TERT-GBM, TERG-GSc

The Bio::DB::HTS perl library or tabix utility must be installed in your
path to use this plugin. The satMutMPRA data file can be
downloaded from https://mpra.gs.washington.edu/satMutMPRA/

satMutMPRA data can be downloaded for both GRCh38 and
GRCh37 from the web server
(https://mpra.gs.washington.edu/satMutMPRA/): Download section,
select GRCh37 or GRCh38 for 'Genome release' and 'Download All
Elements'.

The file must be processed and indexed by tabix before use by this
plugin.

GRCh38

(grep ^Chr GRCh38_ALL.tsv; grep -v ^Chr
GRCh38_ALL.tsv | sort -k1,1 -k2,2n) | bgzip >
satMutMPRA_GRCh38_ALL.gz
tabix -s 1 -b 2 -e 2 -c C
satMutMPRA_GRCh38_ALL.gz

GRCh37

(grep ^Chr GRCh37_ALL.tsv; grep -v ^Chr
GRCh37_ALL.tsv | sort -k1,1 -k2,2n) | bgzip >
satMutMPRA_GRCh37_ALL.gz
tabix -s 1 -b 2 -e 2 -c C
satMutMPRA_GRCh37_ALL.gz

When running the plugin by default Value, P-Value, and Element
information is returned e.g.

--plugin
satMutMPRA,file=/path/to/satMutMPRA_GRCh38_ALL.
gz

You may include all columns with ALL; this fetches all data per
variant (e.g. Tags, DNA, RNA, Value, P-Value, Element):

--plugin
satMutMPRA,file=/path/to/satMutMPRA_GRCh38_ALL.
gz,cols=ALL

https://mpra.gs.washington.edu/satMutMPRA/
https://mpra.gs.washington.edu/satMutMPRA/

HGVS

Splicing
predictions

Plugin Description Category External
libraries

Developer

You may want to select only a specific subset of information to be
reported, you can do this by specifying the specific columns as
parameters to the plugin e.g.

--plugin
satMutMPRA,file=/path/to/satMutMPRA_GRCh38_ALL.
gz,cols=Tags:DNA

If a requested column is not found, the error message will report the
complete list of available columns in the satMutMPRA file. For a
detailed description of the available information please refer to the
manuscript or online web server.

Tabix also allows the data file to be hosted on a remote server. This
plugin is fully compatible with such a setup - simply use the URL of
the remote file:

--plugin
satMutMPRA,file=http://my.files.com/satMutMPRA.
gz

Note that gene locations referred to in satMutMPRA may be out of
sync with those in the latest release of Ensembl; this may lead to
discrepancies with information retrieved from other sources.

Usage examples:

mv satMutMPRA.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
satMutMPRA,file=/path/to/satMutMPRA_data.gz,col
s=col1:col2

SingleLetterA
A

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
returns a HGVSp string with single amino acid letter codes

Usage examples:

mv SingleLetterAA.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin SingleLetterAA

- Ensembl

SpliceAI A VEP plugin that retrieves pre-calculated annotations from
SpliceAI. SpliceAI is a deep neural network, developed by Illumina,
Inc that predicts splice junctions from an arbitrary pre-mRNA
transcript sequence.

Delta score of a variant, defined as the maximum of (DS_AG,
DS_AL, DS_DG, DS_DL), ranges from 0 to 1 and can be
interpreted as the probability of the variant being splice-altering. The
author-suggested cutoffs are:

0.2 (high recall)

0.5 (recommended)

0.8 (high precision)

This plugin is available for both GRCh37 and GRCh38.

More information can be found at: https://pypi.org/project/spliceai/

Please cite the SpliceAI publication alongside VEP if you use this
resource: https://www.ncbi.nlm.nih.gov/pubmed/30661751

Running options:

1. By default, this plugin appends all scores from SpliceAI files.

List::Util
qw(max)

Ensembl

http://my.files.com/satMutMPRA.gz
http://my.files.com/satMutMPRA.gz
http://my.files.com/satMutMPRA.gz
http://my.files.com/satMutMPRA.gz
http://my.files.com/satMutMPRA.gz
http://my.files.com/satMutMPRA.gz
http://my.files.com/satMutMPRA.gz
http://my.files.com/satMutMPRA.gz
http://my.files.com/satMutMPRA.gz
https://github.com/Ensembl/VEP_plugins/blob/release/114/SingleLetterAA.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/SingleLetterAA.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/SpliceAI.pm
https://pypi.org/project/spliceai/
https://www.ncbi.nlm.nih.gov/pubmed/30661751
https://metacpan.org/pod/List::Util

Plugin Description Category External
libraries

Developer

2. Besides the pre-calculated scores, it can also be specified a
score cutoff between 0 and 1.

Output: The output includes the gene symbol, delta scores (DS) and
delta positions (DP) for acceptor gain (AG), acceptor loss (AL),
donor gain (DG), and donor loss (DL).

For tab the output contains one header SpliceAI_pred with
all the delta scores and positions. The format is:
SYMBOL|DS_AG|DS_AL|DS_DG|DS_DL|DP_AG|DP_AL|DP_
DG|DP_DL

For JSON the output is a hash with the following format:
"spliceai":
{"DP_DL":0,"DS_AL":0,"DP_AG":0,"DS_DL":0,"SYMBOL":"X","
DS_AG":0,"DP_AL":0,"DP_DG":0,"DS_DG":0}

For VCF output the delta scores and positions are stored in
different headers. The values are SpliceAI_pred_xx being
xx the score/position. Example: SpliceAI_pred_DS_AG is
the delta score for acceptor gain.

Gene matching: SpliceAI can contain scores for multiple genes that
overlap a variant, and VEP can also predict consequences on
multiple genes for a given variant. The plugin only returns SpliceAI
scores for the gene symbols that match (if any).

If plugin is run with option 2, the output also contains a flag: PASS if
delta score passes the cutoff, FAIL otherwise.

The following steps are necessary before running this plugin:

The files with the annotations for all possible substitutions (snv), 1
base insertions and 1-4 base deletions (indel) within genes are
available here: https://basespace.illumina.com/s/otSPW8hnhaZR

GRCh37:

tabix -p vcf
spliceai_scores.raw.snv.hg37.vcf.gz
tabix -p vcf
spliceai_scores.raw.indel.hg37.vcf.gz

GRCh38:

tabix -p vcf
spliceai_scores.raw.snv.hg38.vcf.gz
tabix -p vcf
spliceai_scores.raw.indel.hg38.vcf.gz

The plugin can then be run:

./vep -i variations.vcf --plugin
SpliceAI,snv=/path/to/spliceai_scores.raw.snv.h
g38.vcf.gz,indel=/path/to/spliceai_scores.raw.i
ndel.hg38.vcf.gz
./vep -i variations.vcf --plugin
SpliceAI,snv=/path/to/spliceai_scores.raw.snv.h
g38.vcf.gz,indel=/path/to/spliceai_scores.raw.i
ndel.hg38.vcf.gz,cutoff=0.5

Usage examples:

mv SpliceAI.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin

https://basespace.illumina.com/s/otSPW8hnhaZR

Splicing
predictions

Splicing
predictions

Plugin Description Category External
libraries

Developer

SpliceAI,snv=/path/to/spliceai_snv_.vcf.gz,
indel=/path/to/spliceai_indel_.vcf.gz

SpliceRegio
n

This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
provides more granular predictions of splicing effects.

Three additional terms may be added:

splice_donor_5th_base_variant : variant falls in the 5th base after
the splice donor junction (5' end of intron)

 v
 ...EEEEEIIIIIIIIII...

(E = exon, I = intron, v = variant location)

splice_donor_region_variant : variant falls in region between 3rd
and 6th base after splice junction (5' end of intron)

 vv vvv
 ...EEEEEIIIIIIIIII...

splice_polypyrimidine_tract_variant : variant falls in polypyrimidine
tract at 3' end of intron, between 17 and 3 bases from the end

 vvvvvvvvvvvvvvv
 ...IIIIIIIIIIIIIIIIIIIIEEEEE...

Usage examples:

mv SpliceRegion.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin SpliceRegion

To only show the additional consequence
extended_intronic_splice_region_variant, use:
./vep -i variations.vcf --plugin
SpliceRegion,Extended

- Ensembl

SpliceVault A VEP plugin that retrieves SpliceVault data to predict exon-skipping
events and activated cryptic splice sites based on the most common
mis-splicing events around a splice site.

This plugin returns the most common variant-associated mis-
splicing events based on SpliceVault data. Each event includes the
following information:

Type: exon skipping (ES), cryptic donor (CD) or cryptic
acceptor (CA)

Transcript impact:

For ES, describes skipped exons, e.g. ES:2 represents exon 2
skipping and ES:2-3 represents skipping of exon 2 and 3

For CD/CA, describes the distance from the annotated splice-
site to the cryptic splice-site with reference to the transcript
(distances to negative strand transcripts are reported
according to the 5' to 3' distance)

Percent of supporting samples: percent of samples supporting
the event over total samples where splicing occurs in that site
(note this may be above 100% if the event is seen in more
samples than annotated splicing)

Frameshift: inframe or out-of-frame event

- Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/SpliceRegion.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/SpliceRegion.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/SpliceVault.pm

Structural
variant data

Plugin Description Category External
libraries

Developer

The plugin also returns information specific to each splice site:

Site position/type: genomic location and type (donor/acceptor)
of the splice-site predicted to be lost by SpliceAI. Cryptic
positions are relative to this genomic coordinate.

Out of frame events: fraction of the top events that cause a
frameshift. As per https://pubmed.ncbi.nlm.nih.gov/36747048,
sites with 3/4 or more in-frame events are likely to be splice-
rescued and not loss-of-function (LoF).

Site sample count and max depth: sample count for this splice
site and max number of reads in any single sample
representing annotated splicing in Genotype-Tissue
Expression (GTEx). This information allows to filter events
based on a minimum number of samples or minimum depth in
GTEx.

SpliceAI delta score (provided by SpliceVault)

Please cite the SpliceVault publication alongside the VEP if you use
this resource: https://pubmed.ncbi.nlm.nih.gov/36747048

The tabix utility must be installed in your path to use this plugin. The
SpliceVault TSV and respective index (TBI) for GRCh38 can be
downloaded from:

https://ftp.ensembl.org/pub/current_variation/SpliceVault/Splice
Vault_data_GRCh38.tsv.gz

https://ftp.ensembl.org/pub/current_variation/SpliceVault/Splice
Vault_data_GRCh38.tsv.gz.tbi

To filter results, please use filter_vep with the output file or standard
output. Documentation on filter_vep is available at:
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html

Usage examples:

mv SpliceVault.pm ~/.vep/Plugins

./vep -i variations.vcf --plugin
SpliceVault,file=/path/to/SpliceVault_data_GRCh
38.tsv.gz

Stringently select predicted loss-of-function
(pLoF) splicing variants
./filter_vep -i variant_effect_output.txt --
filter "SPLICEVAULT_OUT_OF_FRAME_EVENTS >= 3"

StructuralVari
antOverlap

A VEP plugin that retrieves information from overlapping structural
variants.

Parameters can be set using a key=value system:

Argu
ment

Description

file required - a VCF file of reference data.

perc
enta
ge

percentage overlap between SVs (default: 80)

- Ensembl

https://pubmed.ncbi.nlm.nih.gov/36747048
https://pubmed.ncbi.nlm.nih.gov/36747048
https://ftp.ensembl.org/pub/current_variation/SpliceVault/SpliceVault_data_GRCh38.tsv.gz
https://ftp.ensembl.org/pub/current_variation/SpliceVault/SpliceVault_data_GRCh38.tsv.gz
https://ftp.ensembl.org/pub/current_variation/SpliceVault/SpliceVault_data_GRCh38.tsv.gz.tbi
https://ftp.ensembl.org/pub/current_variation/SpliceVault/SpliceVault_data_GRCh38.tsv.gz.tbi
https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://github.com/Ensembl/VEP_plugins/blob/release/114/StructuralVariantOverlap.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/StructuralVariantOverlap.pm

Variant data

Plugin Description Category External
libraries

Developer

Argu
ment

Description

reci
proc
al

calculate reciprocal overlap, options: 0 or 1. (default: 0)
(overlap is expressed as % of input SV by default)

cols colon delimited list of data types to return from the INFO
fields (only AF by default)

same
_typ
e

1/0 only report SV of the same type (eg deletions for
deletions, off by default)

dist
ance

the distance the ends of the overlapping SVs should be
within.

matc
h_ty
pe

only report reference SV which lie within or completely
surround the input SV options: within, surrounding

labe
l

annotation label that will appear in the output (default:
"SV_overlap") Example- input: label=mydata, output:
mydata_name=refSV,mydata_PC=80,mydata_AF=0.05

Example reference data

1000 Genomes Project:
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_s
v_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz

gnomAD: https://storage.googleapis.com/gcp-public-data--
gnomad/papers/2019-sv/gnomad_v2.1_sv.sites.vcf.gz

Example:

./vep -i structvariants.vcf --plugin
StructuralVariantOverlap,file=gnomad_v2_sv.site
s.vcf.gz

Usage examples:

mv StructuralVariantOverlap.pm ~/.vep/Plugins
./vep -i structvariants.vcf --plugin
StructuralVariantOverlap,file=gnomad_v2_sv.site
s.vcf.gz

SubsetVCF A VEP plugin to retrieve overlapping records from a given VCF file.
Values for POS, ID, and ALT, are retrieved as well as values for any
requested INFO field. Additionally, the allele number of the matching
ALT is returned.

Though similar to using --custom, this plugin returns all ALTs for a
given POS, as well as all associated INFO values.

By default, only VCF records with a filter value of "PASS" are
returned, however this behaviour can be changed via the filter
option.

The plugin accepts the following key=value parameters:

Data::Dump
er

Storable
qw(dclone)

Joseph A.
Prinz

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz
https://storage.googleapis.com/gcp-public-data--gnomad/papers/2019-sv/gnomad_v2.1_sv.sites.vcf.gz
https://storage.googleapis.com/gcp-public-data--gnomad/papers/2019-sv/gnomad_v2.1_sv.sites.vcf.gz
https://github.com/Ensembl/VEP_plugins/blob/release/114/SubsetVCF.pm
https://metacpan.org/pod/Data::Dumper
https://metacpan.org/pod/Data::Dumper
https://metacpan.org/pod/Storable

Transcript
annotation

Plugin Description Category External
libraries

Developer

Argumen
t

Description

name short name added used as a prefix (required)

file path to tabix-index vcf file (required)

filter only consider variants marked as PASS, 1 or 0
(default, 1)

fields info fields to be returned (default, not used)

'%' can delimit multiple fields

'*' can be used as a wildcard

Returns:

<name>_POS: POS field from VCF

<name>_REF: REF field from VCF (minimised)

<name>_ALT: ALT field from VCF (minimised)

<name>_alt_index: Index of matching variant (zero-based)

<name>_<field>: List of requested info values

Usage examples:

./vep -i variations.vcf --plugin
SubsetVCF,file=filepath.vcf.gz,name=myvfc,field
s=AC*%AN*

TranscriptAn
notator

A VEP plugin that annotates variant-transcript pairs based on a
given file:

--plugin
TranscriptAnnotator,file=${HOME}/file.tsv.gz

Example of a valid tab-separated annotation file:

#Chrom Pos Ref Alt Transcript
SIFT_score SIFT_pred Comment
11 436154 A G NM_001347882.2
0.03 Deleterious Bad
11 1887471 C T ENST00000421485
0.86 Tolerated Good

Please bgzip and tabix the file with commands such as:

bgzip file.txt
tabix -b2 -e2 file.txt.gz

Options are passed to the plugin as key=value pairs:

Arg
um
ent

Description

fil
e

(mandatory) Tabix-indexed file to parse. Must contain variant
location (chromosome, position, reference allele, alternative
allele) and transcript ID as the first 5 columns. Accepted
transcript IDs include those from Ensembl and RefSeq.

File::Basenam
e

Ensembl

https://github.com/Ensembl/VEP_plugins/blob/release/114/TranscriptAnnotator.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/TranscriptAnnotator.pm
https://metacpan.org/pod/File::Basename
https://metacpan.org/pod/File::Basename

Nearby
features

Transcript
annotation

Plugin Description Category External
libraries

Developer

Arg
um
ent

Description

col
s

Colon-delimited list with names of the columns to append.
Column names are based on the last header line. By default,
all columns (except the first 5) are appended.

pre
fix

String to prefix the name of appended columns (default:
basename of the filename without extensions). Set to 0 to
avoid any prefix.

tri
m

Trim whitespaces from both ends of each column (default:
1).

The tabix and bgzip utilities must be installed in your path to read
the tabix-indexed annotation file: check
https://github.com/samtools/htslib.git for installation instructions.

Usage examples:

mv TranscriptAnnotator.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin
TranscriptAnnotator,file=/path/to/file.txt.gz

TSSDistanc
e

A VEP plugin that calculates the distance from the transcription start
site for upstream variants.

Usage examples:

mv TSSDistance.pm ~/.vep/Plugins
./vep -i variations.vcf --plugin TSSDistance

- Ensembl

UTRAnnotato
r

A VEP plugin that annotates the effect of 5' UTR variant especially
for variant creating/disrupting upstream ORFs. Available for both
GRCh37 and GRCh38.

Options are passed to the plugin as key=value pairs:

Argume
nt

Description

file (Required) Path to UTRAnnotator data file:

Download uORF_5UTR_GRCh37_PUBLIC.txt or
uORF_5UTR_GRCh38_PUBLIC.txt from
https://github.com/Ensembl/UTRannotator

Download from http://sorfs.org

max_ov
erlap

(Optional) Maximum percentage of overlap between
variant and UTR for UTR annotation (default: 100)

Citation

About the role of 5'UTR variants in human genetic disease:

Whiffin, N., Karczewski, K.J., Zhang, X. et al. Characterising the
loss-of-function impact of 5’ untranslated region variants in 15,708
individuals. Nat Commun 11, 2523 (2020).
https://doi.org/10.1038/s41467-019-10717-9

About UTRAnnotator:

List::Util
qw(min max)

Scalar::Uti
l
qw(looks_lik
e_number)

Ensembl

https://github.com/samtools/htslib.git
https://github.com/Ensembl/VEP_plugins/blob/release/114/TSSDistance.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/TSSDistance.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/UTRAnnotator.pm
https://github.com/Ensembl/VEP_plugins/blob/release/114/UTRAnnotator.pm
https://github.com/Ensembl/UTRannotator
http://sorfs.org/
https://doi.org/10.1038/s41467-019-10717-9
https://metacpan.org/pod/List::Util
https://metacpan.org/pod/Scalar::Util
https://metacpan.org/pod/Scalar::Util

Pathogenicity
predictions

Plugin Description Category External
libraries

Developer

The original UTRAnnotator plugin is written by Xiaolei Zhang et al.
Later adopted by Ensembl VEP plugins with some changes. You
can find the original plugin here -
https://github.com/ImperialCardioGenetics/UTRannotator

Please cite the UTRannotator publication alongside the Ensembl
VEP if you use this resource - Annotating high-impact 5'untranslated
region variants with the UTRannotator Zhang, X., Wakeling, M.N.,
Ware, J.S, Whiffin, N. Bioinformatics; doi:
https://academic.oup.com/bioinformatics/advance-
article/doi/10.1093/bioinformatics/btaa783/5905476

Usage examples:

mv UTRAnnotator.pm ~/.vep/Plugins
vep -i variations.vcf --plugin
UTRAnnotator,file=/path/to/uORF_starts_ends_GRC
h38_PUBLIC.txt

skip annotation for variants with a 80% or
higher overlap of the UTR
vep -i variations.vcf --plugin
UTRAnnotator,file=/path/to/uORF_starts_ends_GRC
h38_PUBLIC.txt,max_overlap=80

VARITY This is a plugin for the Ensembl Variant Effect Predictor (VEP) that
adds the pre-computed VARITY scores to predict pathogenicity of
rare missense variants to VEP output.

Please cite the VARITY publication alongside the VEP if you use
this resource:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715197/

Running options :

VARITY scores can be downloaded using

wget
http://varity.varianteffect.org/downloads/varit
y_all_predictions.tar.gz

The files can be tabix processed by :

tar -xzvf varity_all_predictions.tar.gz
cat varity_all_predictions.txt | (head -n 1 &&
tail -n +2 | sort -t$'\t' -k 1,1 -k 2,2n) >
varity_all_predictions_sorted.tsv
sed '1s/.*/#&/'
varity_all_predictions_sorted.tsv >
varity_all_predictions.tsv # to add a # in the
first line of the file
bgzip varity_all_predictions.tsv
tabix -f -s 1 -b 2 -e 2
varity_all_predictions.tsv.gz

Requirements: The tabix utility must be installed in your path to use
this plugin. The --assembly flag is required to use this plugin.

Usage examples:

mv VARITY.pm ~/.vep/Plugins
./vep -i variations.vcf --assembly GRCh37 --
plugin
VARITY,file=/path/to/varity_all_predictions.txt

- Ensembl

https://github.com/ImperialCardioGenetics/UTRannotator
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa783/5905476
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa783/5905476
https://github.com/Ensembl/VEP_plugins/blob/release/114/VARITY.pm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715197/
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz
http://varity.varianteffect.org/downloads/varity_all_predictions.tar.gz

Plugin Description Category External
libraries

Developer

We hope that these will serve as useful examples for users implementing new plugins. If you have any questions about the system, or
suggestions for enhancements please let us know on the ensembl-dev mailing list.
We also encourage you to share any plugins you develop: we are happy to accept pull requests on the VEP_plugins git repository.

There are further published plugins available outside the VEP repository including:

LOFTEE a Loss-Of-Function Transcript Effect Estimator (Konrad Karczewski et al,2020)

How it works

Plugins are run once VEP has finished its analysis for each line of the output, but before anything is printed to the output file.

When each plugin is called (using the run method) it is passed two data structures to use in its analysis; the first is a data structure
containing all the data for the current line, and the second is a reference to a variation API object that represents the combination of a
variant allele and an overlapping or nearby genomic feature (such as a transcript or regulatory region).

This object provides access to all the relevant API objects that may be useful for further analysis by the plugin (such as the current
VariationFeature and Transcript). Please refer to the Ensembl Variation API documentation for more details.

Functionality

We expect that most plugins will simply add information to the last column of the output file, the "Extra" column, and the plugin system
assumes this in various places, but plugins are also free to alter the output line as desired.

The only hard requirement for a plugin to work with VEP is that it implements a number of required methods (such as new which should
create and return an instance of this plugin, get_header_info which should return descriptions of the type of data this plugin produces to
be included in VEP output's header, and run which should actually perform the logic of the plugin).

To make development of plugins easier, we suggest that users use the Bio::EnsEMBL::Variation::Utils::BaseVepPlugin module as their
base class, which provides default implementations of all the necessary methods which can be overridden as required. Please refer to
the documentation in this module for details of all required methods and for a simple example of a plugin implementation.

Filtering using plugins

A common use for plugins will be to filter the output in some way (for example to limit output lines to missense variants) and so we
provide a simple mechanism to support this.

The run method of a plugin is assumed to return a reference to a hash containing information to be included in the output, and if a plugin
should not add any data to a particular line it should return an empty hashref. If a plugin should instead filter a line and exclude it from
the output, it should return undef from its run method, this also means that no further plugins will be run on the line.

If you are developing a filter plugin, we suggest that you use the Bio::EnsEMBL::Variation::Utils::BaseVepFilterPlugin as your base class
and then you need only override the include_line method to return true if you want to include this line, and false otherwise. Again, please
refer to the documentation in this module for more details and an example implementation of a missense filter.

Using plugins

In order to run a plugin you need to include the plugin module in Perl's library path somehow; by default VEP includes the ~/.vep/Plugins
directory in the path, so this is a convenient place to store plugins, but you are also able to include modules by any other means (e.g
using the $PERL5LIB environment variable in Unix-like systems).
You can then run a plugin using the --plugin command line option, passing the name of the plugin module as the argument.

For example, if your plugin is in a module called MyPlugin.pm, stored in ~/.vep/Plugins, you can run it with a command line like:

./vep -i input.vcf --plugin MyPlugin

You can pass arguments to the plugin's 'new' method by including them after the plugin name on the command line, separated by
commas, e.g.:

./vep -i input.vcf --plugin MyPlugin,1,FOO

http://lists.ensembl.org/mailman/listinfo/dev
http://github.com/Ensembl/VEP_plugins
https://github.com/konradjk/loftee
https://www.nature.com/articles/s41586-020-2308-7
https://www.ensembl.org/info/docs/Doxygen/variation-api/index.html
https://www.ensembl.org/info/docs/Doxygen/variation-api/index.html
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1Utils_1_1BaseVepPlugin.html
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1Utils_1_1BaseVepFilterPlugin.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_plugin

If your plugin inherits from BaseVepPlugin, you can then retrieve these parameters as a list from the params method.

You can run multiple plugins by supplying multiple --plugin arguments. Plugins are run serially in the order in which they are specified on
the command line, so they can be run as a pipeline, with, for example, a later plugin filtering output based on the results from an earlier
plugin. Note though that the first plugin to filter a line 'wins', and any later plugins won't get run on a filtered line.

Intergenic variants

When a variant falls in an intergenic region, it will usually not have any consequence types called, and hence will not have any
associated VariationFeatureOverlap objects. In this special case, VEP creates a new VariationFeatureOverlap that overlaps a feature of
type "Intergenic".

To force your plugin to handle these, you must add "Intergenic" to the feature types that it will recognize; you do this by writing your own
feature_types sub-routine:

sub feature_types {
 return ['Transcript', 'Intergenic'];
}

This will cause your plugin to handle any variation features that overlap transcripts or intergenic regions. To also include any regulatory
features, you should use the generic type "Feature":

sub feature_types {
 return ['Feature', 'Intergenic'];
}

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_plugin

Variant Effect Predictor Examples and use cases

Example commands

Read input from STDIN, output to STDOUT

./vep --cache -o stdout

Add regulatory region consequences

./vep --cache -i variants.txt --regulatory

Input file variants.vcf.txt, input file format VCF, add gene symbol identifiers

./vep --cache -i variants.vcf.txt --format vcf --symbol

Filter out common variants based on 1000 Genomes data

./vep --cache -i variants.txt --filter_common

Force overwrite of output file variants_output.txt, check for existing co-located variants, output only coding sequence
consequences, output HGVS names

./vep --cache -i variants.txt -o variants_output.txt --force --check_existing --coding_only --
hgvs

Specify DB connection parameters in registry file ensembl.registry, add SIFT score and prediction, PolyPhen prediction

./vep --database -i variants.txt --registry ensembl.registry --sift b --polyphen p

Connect to Ensembl Genomes db server for Arabidopsis thaliana

./vep --database -i variants.txt --genomes --species arabidopsis_thaliana

Load config from ini file, run in quiet mode

./vep --config vep.ini -i variants.txt -q

Use cache in /home/vep/mycache/, use gzcat instead of zcat

./vep --cache --dir /home/vep/mycache/ -i variants.txt --compress gzcat

Add custom position-based phenotype annotation from remote BED file

./vep --cache -i variants.vcf --custom
file=ftp://ftp.myhost.org/data/phenotypes.bed.gz,short_name=phenotype

Use the plugin named MyPlugin, output only the variation name, feature, consequence type and MyPluginOutput fields

./vep --cache -i variants.vcf --plugin MyPlugin --fields
Uploaded_variation,Feature,Consequence,MyPluginOutput

Right align variants before consequence calculation. For more information, see here.

./vep --cache -i variants.vcf --shift_3prime 1

https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#shifting

Human (GRCh38)
phastCons 7-way

phastCons 20-way

phastCons 100-way

phyloP 7-way

phyloP 20-way

Human (GRCh37)
GERP

phastCons 46-way

phastCons 100-way

phyloP 46-way

phyloP 100-way

Report uploaded allele before minimisation. For more information, see here.

./vep --cache -i variants.vcf --uploaded_allele

gnomAD

gnomAD exome frequency data is included in VEP's cache files from release 90, replacing ExAC; use --af_gnomade to enable using
this data. VEP can also retrieve frequency data from the gnomAD genomes set or ExAC via VEP's custom annotation functionality.

For the latest gnomAD data, please visit gnomAD downloads .

1. VEP requires Bio::DB::HTS to read data from tabix-indexed VCFs - see installation instructions

2. Ensembl's FTP site hosts abridged VCF files for gnomAD and ExAC, additionally remapped to GRCh38 using CrossMap . It is
possible for VEP to read these files directly from their remote location, though for optimal performance the VCF and index should be
downloaded to a local file system.

GRCh38

gnomAD genomes (r2.1, remapped with CrossMap): [VCFs and tabix indexes]

gnomAD exomes (r2.1, remapped with CrossMap): [VCFs and tabix indexes]

ExAC (v0.3, remapped using CrossMap): [VCF] [tabix index]

GRCh37

gnomAD genomes (r2.1): [VCF and tabix indexes]

gnomAD exomes (r2.1): [VCF and tabix indexes]

ExAC (v0.3): [VCF] [tabix index]

3. Run VEP with the following command (using the GRCh38 input example) to get locations and continental-level allele frequencies:

./vep -i examples/homo_sapiens_GRCh38.vcf --cache \
--custom
file=gnomad.genomes.r2.0.1.sites.GRCh38.noVEP.vcf.gz,short_name=gnomADg,format=vcf,type=exact,c
oords=0,fields=AF_AFR%AF_AMR%AF_ASJ%AF_EAS%AF_FIN%AF_NFE%AF_OTH

You will then see data under field names as described in the VEP output header:

gnomADg : gnomad.genomes.r2.0.1.sites.GRCh38.noVEP.vcf.gz (exact)
gnomADg_AFR_AF : AFR_AF field from gnomad.genomes.r2.0.1.sites.GRCh38.noVEP.vcf.gz
gnomADg_AMR_AF : AMR_AF field from gnomad.genomes.r2.0.1.sites.GRCh38.noVEP.vcf.gz
...

where the gnomADg field contains the ID (or coordinates if no ID found) of the variant in the VCF file. Any of the fields in the
gnomAD file INFO field can be added by appending them to the list in your VEP command.

Conservation scores

You can use VEP's custom annotation feature to add conservation scores to your output. For example, to add GERP scores, download
the bigWig file from the list below, and run VEP with the following flag:

./vep --cache -i example.vcf --custom file=All_hg19_RS.bw,short_name=GERP,format=bigwig

Example conservation score files:

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons7way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons20way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons100way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP7way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP20way/
http://hgdownload.soe.ucsc.edu/gbdb/hg19/bbi/All_hg19_RS.bw
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons100way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46way/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP100way/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_uploaded_allele
http://gnomad.broadinstitute.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_gnomade
https://gnomad.broadinstitute.org/downloads
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
http://crossmap.sourceforge.net/
https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh38/variation_genotype/gnomad/r2.1/genomes/
https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh38/variation_genotype/gnomad/r2.1/exomes/
https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh38/variation_genotype/ExAC.0.3.GRCh38.vcf.gz
https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh38/variation_genotype/ExAC.0.3.GRCh38.vcf.gz.tbi
https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh37/variation_genotype/
https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh37/variation_genotype/
https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh37/variation_genotype/ExAC.0.3.GRCh37.vcf.gz
https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh37/variation_genotype/ExAC.0.3.GRCh37.vcf.gz.tbi
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html

phyloP 100-way

All files provided by the UCSC genome browser - files for other species are available from their FTP site , though be sure to use the file
corresponding to the correct assembly.

dbNSFP

dbNSFP - "a lightweight database of human nonsynonymous SNPs and their functional predictions" - provides pathogenicity
predictions from many tools (including SIFT, LRT, MutationTaster, FATHMM) across every possible missense substitution in the human
proteome.

Plugins in VEP sometimes require data processed in specific ways as arguments. Any requirements and usage instructions for each
plugin can be found in the plugin documentation.

In the case of the dbNSFP.pm plugin, the data needs to be downloaded and then processed into a format that the plugin can use. Note
that there are two distinct branches of the files provided for academic and commercial usage; please use the appropriate files for your
use case.

After downloading the file, you will need to process it so that tabix can index it correctly. This will take a while as the file is very large!
Note that you will need the tabix utility in your path to use dbNSFP.

version=4.5c
unzip dbNSFP${version}.zip
zcat dbNSFP${version}_variant.chr1.gz | head -n1 > h

GRCh38/hg38 data
zgrep -h -v "^#chr" dbNSFP${version}_variant.chr* | sort -k1,1 -k2,2n - | cat h - | bgzip -c >
dbNSFP${version}_grch38.gz
tabix -s 1 -b 2 -e 2 dbNSFP${version}_grch38.gz

GRCh37/hg19 data
zgrep -h -v "^#chr" dbNSFP${version}_variant.chr* | awk '$8 != "." ' | sort -k8,8 -k9,9n - | cat h
- | bgzip -c > dbNSFP${version}_grch37.gz
tabix -s 8 -b 9 -e 9 dbNSFP${version}_grch37.gz

Then simply download the dbNSFP.pm plugin and place it either in $HOME/.vep/Plugins/ or a path in your $PERL5LIB. When you
run VEP with the plugin, you will need to select some of the columns that you wish to retrieve; to list them run VEP with the plugin and
the path to the dbNSFP file and no further parameters:

./vep --cache --force --plugin dbNSFP,dbNSFP4.5c_grch38.txt.gz
2014-04-04 11:27:05 - Read existing cache info
2014-04-04 11:27:05 - Auto-detected FASTA file in cache directory
2014-04-04 11:27:05 - Checking/creating FASTA index
2014-04-04 11:27:05 - Failed to instantiate plugin dbNSFP: ERROR: No columns selected to fetch.
Available columns are:
#chr,pos(1-coor),ref,alt,aaref,aaalt,hg18_pos(1-coor),genename,Uniprot_acc,
Uniprot_id,Uniprot_aapos,Interpro_domain,cds_strand,refcodon,SLR_test_statistic,
codonpos,fold-degenerate,Ancestral_allele,Ensembl_geneid,Ensembl_transcriptid,
...

Note that some of these fields are replicates of those produced by the core VEP code (e.g. SIFT, the 1000 Genomes and ESP
frequencies) - you should use the options to enable these from the VEP code in place of the annotations from dbNSFP as the dbNSFP
file covers only missense substitutions. Other fields, such as the conservation scores, may be better served by using genome-wide files
as described above.

To select fields, just add them as a comma-separated list to your command line:

./vep --cache --force --plugin
dbNSFP,dbNSFP4.5c_grch38.txt.gz,LRT_score,FATHM_score,MutationTaster_score

One final point to note is that the dbNSFP scores are frozen on a particular Ensembl release's transcript set; check the readme file on
their download site to find out exactly which. While in the majority of cases protein sequences don't change between releases, in some
circumstances the protein sequence used by VEP in the latest release may differ from the sequence used to calculate the scores in
dbNSFP.

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP100way/
http://hgdownload.soe.ucsc.edu/goldenPath/
https://www.ensembl.org/Homo_sapiens/Info/Annotation#assembly
http://www.ncbi.nlm.nih.gov/pubmed/21520341
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://sites.google.com/site/jpopgen/dbNSFP
http://samtools.sourceforge.net/tabix.shtml
https://github.com/Ensembl/VEP_plugins/blob/release/114/dbNSFP.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_sift
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_esp

Structural variants

VEP can be used to annotate structural variants (SV) with their predicted effect on other genomic features. For more information on SV
input format, see here.

Prediction process

If the INFO keys END or SVLEN are present, the proportion of any overlapping feature covered by the variant is calculated

The alternative allele (or SVTYPE in older VCF files) defines the type of structural variant; some types of structural variants are
tested for specific consequences:

Structural variant type Abbreviation Specific consequences

Insertion INS Feature elongation

Deletion DEL Feature truncation

Duplication DUP Feature amplification/elongation

Inversion INV Not tested for any specific consequence

Copy number variation CNV Feature amplification/elongation (if copy number is 2) or truncation (if copy number is 0)

Breakpoint variant BND Feature truncation

Insertions and deletions

Supports mobile element insertions/deletions, including ALU, HERV, LINE1 and SVA elements

Currently, mobile element variants are treated as any insertion/deletion

Breakpoint variants

Supports chromosome synonyms in breakends (such as chr4 and NC_000004.12)

Processes single breakends and multiple, comma-separated alternative breakends

Consequences are reported for each breakend; for instance, for a VCF input like 1 7936271 . N
N[12:58877476[,N[X:10932343[, it will report the consequences for each of the 3 breakends:

N[12:58877476[: consequences for the first alternative breakend near chr12:58877476

N[X:10932343[: consequences for the second alternative breakend near chrX:10932343

N.: consequences for the reference breakend near chr1:7936271 (represented as detailed in the VCF 4.4 specification, section
5.4.9: Single breakends)

In case of specific breakends not overlaping any reported Ensembl features (such as transcripts and regulatory regions), that
specific breakend will NOT be presented in VEP output.

Reported overlaps

VEP calculates the length and proportion of each genomic feature overlapped by a structural variant

Use the --overlaps option to enable this when using VCF or tab format. (This is reported by default in standard VEP and JSON
format.)

The keys bp_overlap and percentage_overlap are used in JSON format and OverlapBP and OverlapPC in other formats.

Plugin support

CADD plugin

Conservation plugin

NearestGene plugin

Phenotypes plugin

StructuralVariantOverlap plugin: please note that all features of this plugin have been ported to --custom annotation, with additional
improvements

TSSDistance plugin

Changing memory requirements

By default, VEP does not annotate variants larger than 10M. If you are using the command line tool, you can use the --max_sv_size
option to modify this.

https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#sv
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#sv
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#sv
https://samtools.github.io/hts-specs/VCFv4.4.pdf
https://samtools.github.io/hts-specs/VCFv4.4.pdf
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_overlaps
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#CADD
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#Conservation
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#NearestGene
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#Phenotypes
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#StructuralVariantOverlap
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#TSSDistance
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_max_sv_size

This limit is not associated with breakpoint variants: each breakend in a breakpoint variant is analysed by VEP as a single base
(the alternative sequence is currently ignored).

By default, variants are analysed in batches of 5000. Using the --buffer_size option to reduce this can reduce memory requirements,
especially if your data is sparse. A smaller buffer size is essential when annotating structural variants with regulatory data.

Pangenome assemblies

VEP is able to analyse variants in any species or assembly (even if not part of Ensembl data) by providing your own FASTA file and
GFF/GTF annotation:

./vep -i variants.txt -o variants_output.txt --gff data.gff.gz --fasta genome.fa.gz

We also provide data for other assemblies besides those supported in the current Ensembl and Ensembl Genomes sites.

HPRC assemblies

The Human Pangenome Reference Consortium (HPRC) aims to sequence 350 individuals of diverse ancestries, producing a
pangenome of 700 haplotypes by the end of 2024. The first publication (A draft human pangenome reference) describes 47 phased,
diploid assemblies from a cohort of genetically diverse individuals.

The VEP command-line tool (CLI) can annotate and filter variants called against the latest human assemblies, including the telomere-to-
telomere assembly of the CHM13 cell line (T2T-CHM13). We have annotated genes on these human assemblies, based on
Ensembl/GENCODE 38 genes and transcripts, via a new mapping pipeline as detailed in the Methods section of A draft human
pangenome reference . The links to download and visualise the human annotations for HPRC assemblies are summarised in the
Ensembl HPRC data page .

Running VEP with HPRC assemblies

Currently, VEP can only be run with HPRC assemblies in offline mode, one assembly at a time. There are two ways to use VEP with
HPRC assemblies:

Using VEP cache with (recommended) FASTA sequence (the most efficient way)

Using GTF annotation with (mandatory) FASTA sequence

In the examples below, we demonstrate annotating variants on T2T-CHM13v2.0 (GCA_009914755.4 assembly). To create a sample
VCF to use in the examples below, you can take the first 100 lines from the ClinVar VCF file mapped to T2T-CHM13:

clinvar=ftp://ftp.ensembl.org/pub/rapid-
release/species/Homo_sapiens/GCA_009914755.4/ensembl/variation/2022_10/vcf/2024_07/clinvar_2024062
4_GCA_009914755.4.vcf.gz
tabix -h $clinvar 1 | head -n 100 > test.vcf

VEP cache

VEP cache is a downloadable archive containing all transcript models for an assembly; it may also contain regulatory features and
variant data.

Let's start by downloading and extracting the VEP cache to the default VEP directory (available for each annotation by clicking in VEP
cache in the Ensembl HPRC data page). In the case of T2T-CHM13:

cd $HOME/.vep
curl -O https://ftp.ensembl.org/pub/rapid-
release/species/Homo_sapiens/GCA_009914755.4/ensembl/variation/2022_10/indexed_vep_cache/Homo_sapi
ens-GCA_009914755.4-2022_10.tar.gz
tar xzf Homo_sapiens-GCA_009914755.4-2022_10.tar.gz

This will create the folder homo_sapiens_gca009914755v4/107_T2T-CHM13v2.0 with the gene data required to run VEP. The
name of this folder contains relevant information when running VEP:

Species: homo_sapiens_gca009914755v4

Cache version: 107

Assembly: T2T-CHM13v2.0

As well as molecular consequence predictions, many gene/transcript-based VEP options are supported for HPRC assemblies:

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_buffer_size
https://www.ensembl.org/info/about/species.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://humanpangenome.org/
https://www.nature.com/articles/s41586-023-05896-x
https://www.gencodegenes.org/human/release_38.html
https://www.nature.com/articles/s41586-023-05896-x
https://www.nature.com/articles/s41586-023-05896-x
https://projects.ensembl.org/hprc/
https://ftp.ensembl.org/pub/rapid-release/species/Homo_sapiens/GCA_009914755.4/
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://projects.ensembl.org/hprc/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html

vep -i test.vcf --offline \
 --species homo_sapiens_gca009914755v4 \
 --cache_version 107 \
 --fasta Homo_sapiens-GCA_009914755.4-softmasked.fa.gz \
 --domains --symbol --canonical --protein --biotype --uniprot --variant_class

We don't have other annotations, such as RefSeq transcripts or variant information in the cache.

To run VEP with the downloaded cache in offline mode, please specify the species (which here includes assembly name) and cache
version:

vep -i test.vcf --offline --species homo_sapiens_gca009914755v4 --cache_version 107

FASTA sequence

When using VEP cache, supplying the reference genomic sequence in a FASTA file is optional, but is required to enable the following
options:

Create HGVS notations (--hgvs and --hgvsg)

Check the reference sequence given in input data (--check_ref)

Genomic FASTA files can be found in Ensembl HPRC data page > FTP dumps > ensembl > genome. FASTA files need to be either
uncompressed or compressed with bgzip (recommended) to be compatible with VEP. For instance, to download a compressed FASTA
file, uncompress it and then re-compress it with bgzip:

curl -O https://ftp.ensembl.org/pub/rapid-
release/species/Homo_sapiens/GCA_009914755.4/ensembl/genome/Homo_sapiens-GCA_009914755.4-
softmasked.fa.gz
gzip -d Homo_sapiens-GCA_009914755.4-softmasked.fa.gz
bgzip Homo_sapiens-GCA_009914755.4-softmasked.fa.gz

Afterwards, you can run VEP using cache and the --fasta flag:

vep -i test.vcf --offline \
 --species homo_sapiens_gca009914755v4 \
 --cache_version 107 \
 --fasta Homo_sapiens-GCA_009914755.4-softmasked.fa.gz

More information on using FASTA files with VEP is available here.

GTF and GFF annotation

As an alternative to using cache files, VEP can utilise gene information in appropriately indexed GTF or GFF files. GTF and GFF files
can be downloaded from the annotation column in the Ensembl HPRC data page . The data needs to be re-sorted in chromosomal
order, compressed in bgzip and indexed with tabix. We present here the example for a GTF file:

curl -O https://ftp.ensembl.org/pub/rapid-
release/species/Homo_sapiens/GCA_009914755.4/ensembl/geneset/2022_07/Homo_sapiens-GCA_009914755.4-
2022_07-genes.gtf.gz
gzip -d Homo_sapiens-GCA_009914755.4-2022_07-genes.gtf.gz
grep -v "#" Homo_sapiens-GCA_009914755.4-2022_07-genes.gtf |\
 sort -k1,1 -k4,4n -k5,5n -t$'\t' |\
 bgzip -c > Homo_sapiens-GCA_009914755.4-2022_07-genes.gtf.gz
tabix Homo_sapiens-GCA_009914755.4-2022_07-genes.gtf.gz

FASTA files are always required when running HPRC data with GTF annotation, as the transcript sequences are not available in the
GFF files.

Afterwards, you can run VEP using the GTF and FASTA files:

vep -i test.vcf \
 --gtf Homo_sapiens-GCA_009914755.4-2022_07-genes.gtf.gz \
 --fasta Homo_sapiens-GCA_009914755.4-softmasked.fa.gz

Check here for more information on using VEP with GTF and GFF annotation.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvsg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_ref
https://projects.ensembl.org/hprc/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://projects.ensembl.org/hprc/
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff

Missense deleteriousness predictions

Although PolyPhen/SIFT scores are not directly available for alternative assemblies by using --polyphen and --sift, they can be retrieved
via the PolyPhen_SIFT plugin.

Using our ProteinFunction pipeline , we ran PolyPhen-2 2.2.3 and SIFT 6.2.1 on the proteome sequences for GRCh38 and all HPRC
assemblies (the protein FASTA files indicated in Ensembl HPRC data page) and stored their results in a single SQLite file:
homo_sapiens_pangenome_PolyPhen_SIFT_20240502.db .

Pre-computed scores and predictions can be retrieved by downloading this file and running VEP with the PolyPhen_SIFT plugin:

curl -O
https://ftp.ensembl.org/pub/current_variation/pangenomes/Human/homo_sapiens_pangenome_PolyPhen_SIF
T_20240502.db
vep -i test.vcf --offline \
 --species homo_sapiens_gca009914755v4 \
 --cache_version 107 \
 --fasta Homo_sapiens-GCA_009914755.4-softmasked.fa.gz \
 --plugin PolyPhen_SIFT,db=human_pangenomes.PolyPhen_SIFT.db

Matched variant annotations (ClinVar, gnomAD and dbSNP)

We don't have variant data in the VEP caches for the pangenome assemblies, but it can be integrated using the --custom option with
data files using the same assembly coordinates. We have lifted-over some key datasets, including ClinVar and gnomAD to the HPRC
assemblies (downloadable from the VCF column in Ensembl HPRC data page).

Download ClinVar data and respective index (TBI)
curl -O https://ftp.ensembl.org/pub/rapid-
release/species/Homo_sapiens/GCA_009914755.4/ensembl/variation/2022_10/vcf/2024_07/clinvar_2024062
4_GCA_009914755.4.vcf.gz
curl -O https://ftp.ensembl.org/pub/rapid-
release/species/Homo_sapiens/GCA_009914755.4/ensembl/variation/2022_10/vcf/2024_07/clinvar_2024062
4_GCA_009914755.4.vcf.gz.tbi

Run VEP with ClinVar data
vep -i test.vcf --offline \
 --species homo_sapiens_gca009914755v4 --cache_version 107 \
 --fasta Homo_sapiens-GCA_009914755.4-softmasked.fa.gz \
 --custom
file=clinvar_20240624_GCA_009914755.4.vcf.gz,short_name=ClinVar,format=vcf,type=exact,coords=0,fie
lds=CLNSIG%CLNREVSTAT%CLNDN

Additional annotations

Ensembl VEP plugins are a simple way to add new functionality to your analysis. Many require data that is only available for GRCh37 or
GRCh38, but others, for example those based on gene attributes or on the fly analysis are compatible with the HGRC assemblies.

Here follows VEP plugins that are easily compatible with alternative human assemblies:

Plugin Description Plugin data Usage example

Blosum62 Looks up the BLOSUM 62
substitution matrix score for the
reference and alternative amino
acids predicted for a missense
mutation.

--plugin Blosum62

DosageSensitivity Retrieves haploinsufficiency and
triplosensitivity probability
scores
for affected genes (Collins et al.,
2022).

Collins_rCNV_2022.dosage
_sensitivity_scores.tsv.
gz

--plugin
DosageSensitivity,file=C
ollins_rCNV_2022.dosage_
sensitivity_scores.tsv.g
z

Downstream Predicts downstream effects of
a frameshift variant on the
protein sequence of a transcript.

Requires a FASTA file provided
via the --fasta option

--plugin Downstream

Draw Draws pictures of the transcript
model showing the variant
location.

--plugin Draw

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_polyphen
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_sift
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#PolyPhen_SIFT
https://github.com/Ensembl/ensembl-variation/tree/main/nextflow/ProteinFunction
https://projects.ensembl.org/hprc/
https://ftp.ensembl.org/pub/current_variation/pangenomes/Human/homo_sapiens_pangenome_PolyPhen_SIFT_20240502.db
https://www.ensembl.org/info/docs/tools/vep/script/vep_custom.html
https://projects.ensembl.org/hprc/
https://github.com/Ensembl/VEP_plugins/blob/main/Blosum62.pm
https://github.com/Ensembl/VEP_plugins/blob/main/DosageSensitivity.pm
https://doi.org/10.1016/j.cell.2022.06.036
https://doi.org/10.1016/j.cell.2022.06.036
https://doi.org/10.1016/j.cell.2022.06.036
https://doi.org/10.1016/j.cell.2022.06.036
https://zenodo.org/record/6347673/files/Collins_rCNV_2022.dosage_sensitivity_scores.tsv.gz
https://zenodo.org/record/6347673/files/Collins_rCNV_2022.dosage_sensitivity_scores.tsv.gz
https://zenodo.org/record/6347673/files/Collins_rCNV_2022.dosage_sensitivity_scores.tsv.gz
https://github.com/Ensembl/VEP_plugins/blob/main/Downstream.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fasta
https://github.com/Ensembl/VEP_plugins/blob/main/Draw.pm

Plugin Description Plugin data Usage example

GeneSplicer Runs GeneSplicer to get splice
site predictions.

Binary and training data for
GeneSplicer (plugin instructions)

--plugin
GeneSplicer,binary=genes
plicer/bin/linux/genespl
icer,training=genesplice
r/human

GO Retrieves Gene Ontology (GO)
terms associated with genes (for
HGRC assemblies, specifically)
using custom GFF annotation
containing GO terms.

Ensembl HPRC data page >
FTP dumps > ensembl >
variation > [date] > gff:

*_GO_plugin.gff.gz

*_GO_plugin.gff.gz.t
bi

--plugin
GO,file=homo_sapiens_gca
009914755v4_110_VEP_GO_p
lugin.gff.gz

HGVSIntronOffset Returns HGVS intron start and
end offsets. To be used with --
hgvs option.

--plugin
HGVSIntronOffset

LoFtool Provides a rank of genic
intolerance and consequent
susceptibility to disease based
on the ratio of Loss-of-function
(LoF) to synonymous mutations
for each gene.

--plugin LoFtool

MaxEntScan Runs MaxEntScan to get splice
site predictions.

Extracted directory from
fordownload.tar.gz

--plugin
MaxEntScan,/path/to/ford
ownload

NearestExonJB Finds the nearest exon junction
boundary to a coding sequence
variant.

--plugin NearestExonJB

NMD Predicts if a variant allows the
transcript to escape nonsense-
mediated mRNA decay based
on certain rules.

--plugin NMD

Phenotypes Retrieves overlapping
phenotype information.

Ensembl HPRC data page >
FTP dumps > ensembl >
variation > [date] > gff:

*_phenotypes_plugin.
gvf.gz

*_phenotypes_plugin.
gvf.gz.tbi

--plugin
Phenotypes,file=homo_sap
iens_gca009914755v4_110_
VEP_phenotypes_plugin.gv
f.gz

pLI Adds the probability of a gene
being loss-of-function intolerant
(pLI).

--plugin pLI

PolyPhen_SIFT Retrieves PolyPhen and SIFT
predictions from a SQLite
database.

homo_sapiens_pangenome_P
olyPhen_SIFT_20240502.db

--plugin
PolyPhen_SIFT,db=homo_sa
piens_pangenome_PolyPhen
_SIFT_20240502.db

ProteinSeqs Writes two files with the
reference and mutated protein
sequences of any proteins found
with non-synonymous mutations
in the input file.

--plugin ProteinSeqs

SingleLetterAA Returns HGVSp string with
single amino acid letter codes.

--plugin SingleLetterAA

SpliceRegion Provides more granular
predictions of splicing effects.

--plugin SpliceRegion

SubsetVCF Retrieves overlapping records
from a given VCF file.

A VCF file --plugin
SubsetVCF,file=file.vcf.
gz,name=myvfc

https://github.com/Ensembl/VEP_plugins/blob/main/GeneSplicer.pm
https://ccb.jhu.edu/software/genesplicer/
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#GeneSplicer
https://github.com/Ensembl/VEP_plugins/blob/main/GO.pm
https://projects.ensembl.org/hprc/
https://github.com/Ensembl/VEP_plugins/blob/main/HGVSIntronOffset.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://github.com/Ensembl/VEP_plugins/blob/main/LoFtool.pm
https://github.com/Ensembl/VEP_plugins/blob/main/MaxEntScan.pm
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://hollywood.mit.edu/burgelab/maxent/download/fordownload.tar.gz
https://github.com/Ensembl/VEP_plugins/blob/main/NearestExonJB.pm
https://github.com/Ensembl/VEP_plugins/blob/main/NMD.pm
https://github.com/Ensembl/VEP_plugins/blob/main/Phenotypes.pm
https://projects.ensembl.org/hprc/
https://github.com/Ensembl/VEP_plugins/blob/main/pLI.pm
https://github.com/Ensembl/VEP_plugins/blob/main/PolyPhen_SIFT.pm
https://ftp.ensembl.org/pub/current_variation/pangenomes/Human/homo_sapiens_pangenome_PolyPhen_SIFT_20240502.db
https://ftp.ensembl.org/pub/current_variation/pangenomes/Human/homo_sapiens_pangenome_PolyPhen_SIFT_20240502.db
https://github.com/Ensembl/VEP_plugins/blob/main/ProteinSeqs.pm
https://github.com/Ensembl/VEP_plugins/blob/main/SingleLetterAA.pm
https://github.com/Ensembl/VEP_plugins/blob/main/SpliceRegion.pm
https://github.com/Ensembl/VEP_plugins/blob/main/SubsetVCF.pm

Plugin Description Plugin data Usage example

TranscriptAnnotator Annotates variant-transcript
pairs based on a given file.

Tab-separated annotation file
(plugin instructions)

--plugin
TranscriptAnnotator,file
=annotation.txt.gz

TSSDistance Calculates the distance from the
transcription start site for
upstream variants.

--plugin TSSDistance

Citations and VEP users

VEP is used by many organisations and projects:

VEP forms a part of Illumina's VariantStudio software

Gemini is a framework for exploring genome variation that uses VEP

The DECIPHER project uses VEP in its analysis pipelines

Other citations and use cases:

VAX is a suite of plugins for VEP that expands its functionality

pViz is a visualisation tool for VEP results files

McCarthy et al compares VEP to AnnoVar

Pabinger et al reviews variant analysis software, including VEP

VEP is used to provide annotation for the ExAC and gnomAD projects

https://github.com/Ensembl/VEP_plugins/blob/main/TranscriptAnnotator.pm
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#TranscriptAnnotator
https://github.com/Ensembl/VEP_plugins/blob/main/TSSDistance.pm
http://variantstudio.software.illumina.com/
http://gemini.readthedocs.org/
https://www.deciphergenomics.org/
http://bib.oxfordjournals.org/content/early/2014/03/12/bib.bbu008.full
https://academic.oup.com/bioinformatics/article/30/23/3408/207567
https://genomemedicine.biomedcentral.com/articles/10.1186/gm543
http://bib.oxfordjournals.org/content/early/2013/01/21/bib.bbs086.full
http://gnomad.broadinstitute.org/

Variant Effect Predictor Other information

Getting VEP to run faster

Set up correctly, VEP is capable of processing around 3 million variants in 30 minutes. There are a number of steps you can take to
make sure your VEP installation is running as fast as possible:

1. Make sure you have the latest version of VEP and the Ensembl API. We regularly introduce optimisations, alongside the new
features and bug fixes of a typical new release.

2. Download a cache file for your species. If you are using --database, you should consider using --cache or --offline instead. Any time
VEP has to access data from the database (even if you have a local copy), it will be slower than accessing data in the cache on your
local file system.

Enabling certain flags forces VEP to access the database, and you will be warned at startup that it will do this with e.g.:

2011-06-16 16:24:51 - INFO: Database will be accessed when using --check_svs

Consider carefully whether you need to use these flags in your analysis.

3. If you use --check_existing or any flags that invoke it (e.g. --af, --af_1kg, --filter_common, --everything), tabix-convert your cache file.
Checking for known variants using a converted cache is >100% faster than using the default format.

4. Download a FASTA file (and use the flag --fasta) if you use --hgvs or --check_ref. Again, this will prevent VEP accessing the
database unnecessarily (in this case to retrieve genomic sequence).

5. Using forking enables VEP to run multiple parallel "threads", with each thread processing a subset of your input. Most modern
computers have more than one processor core, so running VEP with forking enabled can give huge speed increases (3-4x faster in
most cases). Even computers with a single core will see speed benefits due to overheads associated with using object-oriented
code in Perl.

To use forking, you must choose a number of forks to use with the --fork flag. We recommend using 4 forks:

./vep -i my_input.vcf --fork 4 --offline

but depending on various factors specific to your setup you may see faster performance with fewer or more forks.

When writing plugins be aware that while the VEP code attempts to preserve the state of any plugin-specific cached data between
separate forks, there may be situations where data is lost. If you find this is the case, you should disable forking in the new() method
of your plugin by deleting the "fork" key from the $config hash.

6. Make sure your cache and FASTA files are stored on the fastest file system or disk you have available. If you have a lot of memory
in your machine, you can even pre-copy the files to memory using tmpfs .

7. Consider if you need to generate HGVS notations (--hgvs); this is a complex annotation step that can add ~50-80% to your runtime.
Note also that --hgvs is switched on by --everything.

8. Install the Set::IntervalTree Perl package. This package speeds up VEP's internals by changing how overlaps between variants
and transcript components are calculated.

9. Install the Ensembl::XS package. This contains compiled versions of certain key subroutines used in VEP that will run faster than
the default native Perl equivalents. Using this should improve runtime by 5-10%.

10. Add the --no_stats flag. Calculating summary statistics increases VEP runtime, so can be switched off if not required

11. VEP is optimised to run on input files that are sorted in chromosomal order. Unsorted files will still work, albeit more slowly.

12. For very large files (for example those from whole-genome sequencing), VEP process can be easily parallelised by dividing your file
into chunks (e.g. by chromosome). VEP will also work with tabix-indexed, bgzipped VCF files, and so the tabix utility could be used
to divide the input file:

 tabix -h variants.vcf.gz 12:1000000-20000000 | ./vep --cache --vcf

Species with multiple assemblies

https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#download
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_database
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_database
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_database
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#limitations
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_existing
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_filter_common
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_everything
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#convert
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_fork
https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html
https://www.howtoforge.com/storing-files-directories-in-memory-with-tmpfs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_everything
http://search.cpan.org/~benbooth/Set-IntervalTree/lib/Set/IntervalTree.pm
https://github.com/Ensembl/ensembl-xs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_stats

Ensembl currently supports the two latest human assembly versions. We provide a VEP cache using the latest software version (114) for
both GRCh37 and GRCh38.

The VEP installer will install and set up the correct cache and FASTA file for your assembly of interest. If using the --AUTO functionality
to install without prompts, remember to add the assembly version required using e.g. "--ASSEMBLY GRCh37". It is also possible to have
concurrent installations of caches from both assemblies; just use the --assembly to select the correct one when you run VEP.

Once you have installed the relevant cache and FASTA file, you are then able to use VEP as normal. If you are using GRCh37 and
require database access in addition to the cache (for example, to look up variant identifiers using --format id, see cache limitations), you
will be warned you that you must change the database port in order to connect to the correct database:

ERROR: Cache assembly version (GRCh37) and database or selected assembly version (GRCh38) do not
match

If using human GRCh37 add "--port 3337" to use the GRCh37 database, or --offline to avoid database
connection entirely

If you have data you wish to map to a new assembly, you can use the Ensembl assembly converter tool - if you've downloaded VEP,
then you have it already! The tool is found in the ensembl-tools/scripts/assembly_converter folder. There is also an online version of the
tool available. Both UCSC (liftOver) and NCBI (Remap) also provide tools for converting data between assemblies.

Summarising annotation

By default VEP is configured to provide annotation on every genomic feature that each input variant overlaps. This means that if a
variant overlaps a gene with multiple alternate splicing variants (transcripts), then a block of annotation for each of these transcripts is
reported in the output. In the default VEP output format each of these blocks is written on a single line of output; in VCF output format the
blocks are separated by commas in the INFO field.

A number of options are provided to reduce the amount of output produced if this depth of annotation is not required.

Example

Input data (VCF - input.vcf)

##fileformat=VCFv4.2
#CHROM POS ID REF ALT
1 230710048 rs699 A G
1 230710514 var_2 A G,T

Example of VEP command and output (no "pick" option):

./vep --cache -i input.vcf -o output.txt

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence cDNA_position
CDS_position Protein_position Amino_acids Codons Existing_variation Extra
rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript missense_variant 1018
803 268 M/T aTg/aCg - IMPACT=MODERATE;STRAND=-1
rs699 1:230710048 G ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant -
- - - - - IMPACT=MODIFIER;DISTANCE=650;STRAND=-1
var_2 1:230710514 G ENSG00000135744 ENST00000366667 Transcript synonymous_variant 552
337 113 L Ttg/Ctg - IMPACT=LOW;STRAND=-1
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript missense_variant 552
337 113 L/M Ttg/Atg - IMPACT=MODERATE;STRAND=-1
var_2 1:230710514 G ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant -
- - - - - IMPACT=MODIFIER;DISTANCE=184;STRAND=-1
var_2 1:230710514 T ENSG00000244137 ENST00000412344 Transcript downstream_gene_variant -
- - - - - IMPACT=MODIFIER;DISTANCE=184;STRAND=-1

Options

--pick

VEP chooses one block of annotation per variant, using an ordered set of criteria. This order may be customised using --pick_order.

1. MANE Select transcript status

https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#installer
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_assembly
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_format
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#limitations
https://www.ensembl.org/info/docs/tools/index.html
https://www.ensembl.org/info/docs/tools/index.html
https://genome.ucsc.edu/util.html
http://www.ncbi.nlm.nih.gov/genome/tools/remap
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#output
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#vcfout
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick_order
https://www.ensembl.org/info/genome/genebuild/mane.html

2. MANE Plus Clinical transcript status

3. canonical status of transcript

4. APPRIS isoform annotation

5. transcript support level

6. biotype of transcript ("protein_coding" preferred)

7. CCDS status of transcript

8. consequence rank according to this table

9. translated, transcript or feature length (longer preferred)

example of VEP command and output, with the "--pick" option.

./vep --cache -i input.vcf -o output.txt --pick

rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript
missense_variant 843 776 259 M/T aTg/aCg -
IMPACT=MODERATE;STRAND=-1
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript
missense_variant 377 310 104 L/M Ttg/Atg -
IMPACT=MODERATE;STRAND=-1

--pick_allele

As above, but chooses one consequence block per variant allele. This can be useful for VCF input files with more than one ALT
allele.

example of VEP command and output, with the "--pick_allele" option.

./vep --cache -i input.vcf -o output.txt --pick_allele

rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript
missense_variant 843 776 259 M/T aTg/aCg -
IMPACT=MODERATE;STRAND=-1
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript
missense_variant 377 310 104 L/M Ttg/Atg -
IMPACT=MODERATE;STRAND=-1
var_2 1:230710514 G ENSG00000135744 ENST00000366667 Transcript
synonymous_variant 377 310 104 L Ttg/Ctg - IMPACT=LOW;STRAND=-1

--per_gene

As --pick, but chooses one annotation block per gene that the input variant overlaps.

example of VEP command and output, with the "--per_gene" option.

./vep --cache -i input.vcf -o output.txt --per_gene

rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript
missense_variant 843 776 259 M/T aTg/aCg -
IMPACT=MODERATE;STRAND=-1
rs699 1:230710048 G ENSG00000244137 ENST00000412344 Transcript
downstream_gene_variant - - - - - -
IMPACT=MODIFIER;DISTANCE=650;STRAND=-1
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript
missense_variant 377 310 104 L/M Ttg/Atg -
IMPACT=MODERATE;STRAND=-1
var_2 1:230710514 G ENSG00000244137 ENST00000412344 Transcript
downstream_gene_variant - - - - - -
IMPACT=MODIFIER;DISTANCE=184;STRAND=-1

--pick_allele_gene

As above, but chooses one consequence block per variant allele and gene combination.

example of VEP command and output, with the "--pick_allele_gene" option.

https://www.ensembl.org/info/genome/genebuild/mane.html
https://www.ensembl.org/Help/Glossary?id=521
https://www.ensembl.org/Help/Glossary?id=492
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#vcf
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick

./vep --cache -i input.vcf -o output.txt --pick_allele_gene

rs699 1:230710048 G ENSG00000135744 ENST00000366667 Transcript
missense_variant 843 776 259 M/T aTg/aCg -
IMPACT=MODERATE;STRAND=-1
rs699 1:230710048 G ENSG00000244137 ENST00000412344 Transcript
downstream_gene_variant - - - - - -
IMPACT=MODIFIER;DISTANCE=650;STRAND=-1
var_2 1:230710514 T ENSG00000135744 ENST00000366667 Transcript
missense_variant 377 310 104 L/M Ttg/Atg -
IMPACT=MODERATE;STRAND=-1
var_2 1:230710514 T ENSG00000244137 ENST00000412344 Transcript
downstream_gene_variant - - - - - -
IMPACT=MODIFIER;DISTANCE=184;STRAND=-1
var_2 1:230710514 G ENSG00000135744 ENST00000366667 Transcript
synonymous_variant 377 310 104 L Ttg/Ctg - IMPACT=LOW;STRAND=-1
var_2 1:230710514 G ENSG00000244137 ENST00000412344 Transcript
downstream_gene_variant - - - - - -
IMPACT=MODIFIER;DISTANCE=184;STRAND=-1

--flag_pick

Instead of choosing one block and removing the others, this option adds a flag "PICK=1" to picked annotation block, allowing you to
easily filter on this later using VEP's filtering tool.

--flag_pick_allele

As above, but flags one block per allele.

--flag_pick_allele_gene

As above, but flags one block per allele and gene combination.

--most_severe

This flag reports only the consequence type of the block with the highest rank, according to this table.

example of VEP command and output, with the "--most_severe" option.

./vep --cache -i input.vcf -o output.txt --most_severe

rs699 1:230710048 - - - - missense_variant - - - - - - -
var_2 1:230710514 - - - - missense_variant - - - - - - -

--summary

This flag reports only a comma-separated list of the consequence types predicted for this variant.

example of VEP command and output, with the "--summary" option.

./vep --cache -i input.vcf -o output.txt --summary

rs699 1:230710048 - - - - missense_variant,downstream_gene_variant -
- - - - - -
var_2 1:230710514 - - - - missense_variant,synonymous_variant,downstream_gene_variant -
- - - - - -

HGVS notations

Output

HGVS notations can be produced by VEP using the --hgvs flag. Coding (c.) and protein (p.) notations given against Ensembl identifiers
use versioned identifiers that guarantee the identifier refers always to the same sequence.

https://www.ensembl.org/info/docs/tools/vep/script/vep_filter.html
https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences
http://varnomen.hgvs.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvs
https://www.ensembl.org/info/genome/stable_ids/index.html

Genomic HGVS notations may be reported using --hgvsg. Note that the named reference for HGVSg notations will be the chromosome
name from the input (as opposed to the officially recommended chromosome accession).

HGVS notations for insertions or deletions are by default shifted 3-prime relative to the reported transcript or protein sequence in
accordance with HGVS specifications. This may lead to discrepancies between the coordinates reported in the HGVS nomenclature and
the coordinate columns reported by VEP. You may instruct VEP not to shift using --shift_hgvs 0.

Reference sequence used as part of VEP's HGVSc calculations is taken from a given FASTA file, rather than the variant reference.
HGVSp is calculated using the given variant reference.

Input

VEP supports using HGVS notations as input. This feature is currently under development and not all HGVS notation types are
supported. Notations relative to genomic (g.) or coding (c.) sequences are fully supported; protein (p.) notations are supported in limited
fashion due to the complexity involved in determining the multiple possible underlying genomic sequence changes that could produce a
single protein change. A warning will be given if a particular notation cannot be parsed.

By default VEP uses Ensembl transcripts as the reference for determining consequences, and hence also for HGVS notations. However,
it is possible to parse HGVS notations that use RefSeq transcripts as the reference sequence by using the --refseq flag. Such notations
must include the version number of the transcript e.g.

NM_080794.3:c.1001C>T

where ".3" denotes that this is version 3 of the transcript NM_080794. See below for more details on how VEP can use RefSeq
transcripts.

RefSeq transcripts

If you prefer to exclude predicted RefSeq transcripts (those with identifiers beginning with "XM_" or "XR_") use --exclude_predicted.
We do not support predicted RefSeq transcripts for GRCh37

Identifiers and other data

VEP's RefSeq cache lacks many classes of data present in the Ensembl transcript cache.

Included in the RefSeq cache

Gene symbol

SIFT and PolyPhen predictions

Not included in the RefSeq cache

APPRIS annotation

TSL annotation

UniProt identifiers

CCDS identifiers

Protein domains

Gene-phenotype association data

Differences to the reference genome

RefSeq transcript sequences may differ from the genome sequence to which they are aligned. Ensembl's API (and hence VEP)
constructs transcript models using the genomic reference sequence. These differences are accounted for using BAM-edited transcript
models. in human cache files from release 90 onwards. Prior to release 90 and in non-human species differences between the RefSeq
sequence and the genomic sequence are not accounted for, so some annotations produced by VEP on these transcripts may be
inaccurate. Most differences occur in non-coding regions, typically in UTRs at either end of transcripts or in the addition of a poly-A tail,
causing minimal impact on annotation.

For human VEP cache files, each RefSeq transcript is annotated with the REFSEQ_MATCH flag indicating whether and how the RefSeq
model differs from the underlying genome.

Correcting transcript models with BAM files

NCBI have released BAM files that contain alignments of RefSeq transcripts to the genome. From release 90 onwards, these alignments
have been incorporated and used to correct the transcript models in the human RefSeq and merged cache files.

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_hgvsg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_shift_hgvs
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_refseq
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_exclude_predicted
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html#refseq_match

VEP's cache building process uses the sequence and alignment in the BAM to correct the RefSeq model. If the corrected model does
not match the original RefSeq sequence in the BAM, the corrected model is discarded. The success or failure of the BAM edit is
recorded in the BAM_EDIT field of the VEP output. Failed edits are extremely rare (< 0.01% of transcripts), but any VEP annotations
produced on transcripts with a failed edit status should be interpreted with extreme caution.

Using BAM-edited transcripts causes VEP to change how alleles are interpreted from input variants. Input variants are typically encoded
in VCFs that are called using the reference genome. This means that the alternate (ALT) allele as given in the VCF may correspond to
the reference allele as found in the corrected RefSeq transcript model. VEP will account for this, using the corrected reference allele (by
enabling --use_transcript_ref) when calculating consequences, and the GIVEN_REF and USED_REF fields in the VEP output indicate
any change made. If the reference allele derived from the transcript matches any given alternate (ALT) allele, then no consequence data
will be produced for this allele as it will be considered non-variant. Note that this process may also clash with any interpretation from
using --check_ref, so it is recommended to avoid using this flag.

To override the behaviour of --use_transcript_ref and force VEP to use your input reference allele instead of the one derived from the
transcript, you may use --use_given_ref.

VEP can also side-load BAM files at runtime to correct transcript models on-the-fly; this allows corrections to be applied for other
species, where alignments are available, or when using RefSeq GFF files, rather than the cache.

./vep --cache --refseq -i variants.vcf --species mus_musculus --bam
GCF_000001635.26_GRCm38.p6_knownrefseq_alns.bam

BAM files are available from NCBI:

Human GRCh38.p13

Human GRCh37.p13

Existing or colocated variants

Use the --check_existing flag to identify known variants colocated with input variant. VEP's known variant cache is derived from
Ensembl's variation database and contains variants from dbSNP and other sources.

VEP by default uses a normalisation-based allele matching algorithm to identify known variants that match input variants. Since both
input and known variants may have multiple alternate (ALT) or variant alleles, each pair of reference (REF) and ALT alleles are
normalised and compared independently to arrive at potential matches. VCF permits multiple allele types to be encoded on the same
line, while dbSNP assigns separate rsID identifiers to different allele types at the same locus. This means different alleles from the same
input variant may be assigned different known variant identifiers.

Illustration of VEP's allele matching algorithm resolving one VCF line with multiple ALTs to three different variant types and coordinates

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_use_transcript_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_use_transcript_ref
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_use_given_ref
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/annotation_releases/109.20200815/GCF_000001405.39_GRCh38.p13/RefSeq_transcripts_alignments/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/Homo_sapiens/annotation_releases/105.20190906/GCF_000001405.25_GRCh37.p13/RefSeq_transcripts_alignments/
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_check_existing
https://www.ensembl.org/info/genome/variation/species/sources_documentation.html

Note that allele matching occurs independently of any allele transformations carried out by --minimal; VEP will match to the same
identifiers and frequency data regardless of whether the flag is used.

For some data sources (COSMIC, HGMD), Ensembl is not licensed to redistribute allele-specific data, so VEP will report the existence of
co-located variants with unknown alleles without carrying out allele matching. To disable this behaviour and exclude these variants, use
the --exclude_null_alleles flag.

To disable allele matching completely and compare variant locations only, use --no_check_alleles.

Frequency data

In addition to identifying known variants, VEP also reports allele frequencies for input alleles from major genotyping projects (1000
genomes, gnomAD exomes and gnomAD genomes). VEP's cache currently contains only frequency data for alleles that have been
submitted to dbSNP or are imported via another source into the Ensembl variation database. This means that until gnomAD's full data
set is submitted to dbSNP and incorporated into Ensembl, the frequency for some alleles may be missing from VEP's cache data.

To access the full gnomAD data set, it is possible to use VEP's custom annotation feature to retrieve the frequency data directly from the
gnomAD VCF files; see instructions here.

Normalising Consequences

Insertions and deletions in repetitive sequences can be often described at different equivalent locations and may therefore be assigned
different consequence predictions. VEP can optionally convert variant alleles to their most 3’ representation before consequence
calculation.

In the example below, we insert a G at the start of the repeated region. Without the --shift_3prime flag, VEP will calculate consequences
at the input position and report the variant as a frameshift, and recognising that the variant lies within 2 bases of a splice site, as
splice_region_variant.

./vep --cache -id '3 46358467 . A AG'

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence
cDNA_position CDS_position Protein_position Amino_acids Codons Existing_variation
Extra
3_46358468_-/G 3:46358467-46358468 G ENSG00000121807 ENST00000292301 Transcript
frameshift_variant,splice_region_variant 1425-1426 940-941 314 S/RX agc/aGgc
-
 IMPACT=HIGH;STRAND=1
...

However, with --shift_3prime switched on, VEP will right align all insertions and deletions within repeated regions, shifting the inserted G
two positions to the right before consequence calculation, providing the splice_donor_variant consequence instead.

./vep --cache -id '3 46358467 . A AG' --shift_3prime 1

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence
cDNA_position CDS_position Protein_position Amino_acids Codons Existing_variation
Extra
3_46358468_-/G 3:46358467-46358468 G ENSG00000121807 ENST00000292301 Transcript
splice_donor_variant - - - - - - IMPACT=HIGH;STRAND=1
...

Using --shift_genomic will also update the location field. However, --shift_genomic will also shift intergenic variants, which can lead to a
reduction in performance.

./vep --cache -id '3 46358467 . A AG' --shift_genomic 1

https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_minimal
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_exclude_null_alleles
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_no_check_alleles
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_1kg
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_gnomade
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_af_gnomadg
https://www.ensembl.org/info/genome/variation/species/sources_documentation.html
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence
cDNA_position CDS_position Protein_position Amino_acids Codons Existing_variation
Extra
3_46358468_-/G 3:46358469-46358470 G ENSG00000121807 ENST00000292301 Transcript
splice_donor_variant - - - - - - IMPACT=HIGH;STRAND=1
...

When shifting, insertions or deletions of length 2 or more can lead to alterations in the reported alternate allele. For example, an insertion
of GAC that can be shifted 2 bases in the 3' direction will alter the alternate allele to CGA.

./vep --cache -id '3 46358464 . A AGAC' --shift_3prime 1

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence
cDNA_position CDS_position Protein_position Amino_acids Codons Existing_variation
Extra
3_46358465_-/GAC 3:46358464-46358465 CGA ENSG00000121807 ENST00000292301 Transcript
inframe_insertion,splice_region_variant 1424-1425 939-940 313-314 -/R -/CGA -
IMPACT=MODERATE;STRAND=1
...

./vep --cache -id '3 46358464 . A AGAC' --shift_3prime 0

#Uploaded_variation Location Allele Gene Feature Feature_type Consequence
cDNA_position CDS_position Protein_position Amino_acids Codons Existing_variation
Extra
3_46358465_-/GAC 3:46358464-46358465 GAC ENSG00000121807 ENST00000292301 Transcript
inframe_insertion 1422-1423 937-938 313 R/RR aga/aGACga -
IMPACT=MODERATE;STRAND=1

Variant Effect Predictor FAQ

For any questions not covered here, please send an email to the Ensembl developer's mailing list (public) or contact the Ensembl
Helpdesk (private). Also you can report issues through our (public) Github repositories. For general vep issues you should use ensembl-
vep repository and for specific plugins you should use VEP_plugins repository.

General questions

Q: Why has my insertion/deletion variant encoded in VCF disappeared from the VEP output?

Ensembl treats unbalanced variants differently to VCF - your variant hasn't disappeared, it may have just changed slightly! You can solve
this by giving your variants a unique identifier in the third column of the VCF file. See here for a full discussion.

Q: Why don't I see any co-located variants when using species X?

Ensembl only has variation databases for a subset of all Ensembl species - see this document for details.

Q: Why do I see multiple known variants mapped to my input variant?

VEP compares your input to known variants from the Ensembl variation database. In some cases one input variant can match multiple
known variants:

Germline variants from dbSNP and somatic mutations from COSMIC may be found at the same locus

Some sources, e.g. HGMD, do not provide public access to allele-specific data, so an HGMD variant with unknown alleles may
colocate with one from dbSNP with known alleles

Multiple alternate alleles from your input may match different variants as they are described in dbSNP

See here for a full discussion.

Q: VEP is not assigning a frequency to my input variant - why?

VEP's cache contains frequency data only for variants and alleles imported into Ensembl's variation database. See here for a full
discussion.

Q: Why do I see so many lines of output for each variant in my input?

While it would be convenient to have a simple, one word answer to the question "What is the consequence of this variant?", in reality
biology is not this simple! Many genes have more than one transcript, so VEP provides a prediction for each transcript that a variant
overlaps. VEP has options to help select results according to your requirements; the --canonical and --ccds options indicate which
transcripts are canonical and belong to the CCDS set respectively, while --pick, --per_gene, --summary and --most_severe allow you to
give a more summary level assessment per variant.

Furthermore, several "compound" consequences are also possible - if, for example, a variant falls in the final few bases of an exon, it
may be considered to affect a splicing site, in addition to possibly affecting the coding sequence.

Q: How do I reduce VEP's memory requirement?

There are a number of ways to do this-

1. Ensure your input file is sorted by location. This can greatly reduce memory requirements and runtime

2. Consider reducing the buffer size. This reduces the number of variants annotated together in a batch and can be modified in both
command line and web interfaces. Reducing buffer size may increase run time.

3. Ensure you are only using the options you need, rather than --everything. Some data-rich options, such as regulatory annotation
have an impact on memory use

Q: How to cite VEP?

If you use VEP, please cite our UPDATED publication so we can continue to support VEP development.

https://www.ensembl.org/info/about/contact/index.html
https://www.ensembl.org/Help/Contact
https://www.ensembl.org/Help/Contact
https://github.com/Ensembl/ensembl-vep/issues
https://github.com/Ensembl/ensembl-vep/issues
https://github.com/Ensembl/VEP_plugins/issues
https://www.ensembl.org/info/docs/tools/vep/script/vep_formats.html#vcf
https://www.ensembl.org/info/genome/variation/species/species_data_types.html#source
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#colocated
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#colocated
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_canonical
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_ccds
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_pick
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_per_gene
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_summary
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_most_severe
https://www.ensembl.org/info/docs/tools/vep/index.html#publication

Web VEP questions

Q: How do I access the web version of the Variant Effect Predictor?

You can find the web VEP on the Tools page.

Q: Why is the output I get for my input file different when I use the web VEP and command line VEP?

Ensure that you are passing equivalent arguments to the script that you are using in the web version. If you are sure this is still a
problem, please report it on the ensembl-dev mailing list.

Q: Is there a tutorial for web VEP?

Yes, see our latest tutorial Annotating and prioritizing genomic variants using the Ensembl Variant Effect Predictor — A tutorial for more
information on using the Ensembl VEP web interface.

Command line VEP questions

Q: How can I make VEP run faster?

There are a number of factors that influence how fast VEP runs. Have a look at our handy guide for tips on improving VEP runtime.

Q: Why am I not seeing the same variant from my input in the output?

Since the Ensembl 110 release, VEP by default will minimise the input allele for display in the output. To see the exact allele
representation you provided, use the --uploaded_allele option.

Q: Why do I see "N" as the reference allele in my HGVS strings?

Q: Why do I get errors related with Sequence.pm?

substr outside of string at /nfs/users/nfs_w/wm2/Perl/ensembl-
variation/modules/Bio/EnsEMBL/Variation/Utils/Sequence.pm line 511.
Use of uninitialized value $ref_allele in string eq at /nfs/users/nfs_w/wm2/Perl/ensembl-
variation/modules/Bio/EnsEMBL/Variation/Utils/Sequence.pm line 514.
Use of uninitialized value in concatenation (.) or string at /nfs/users/nfs_w/wm2/Perl/ensembl-
variation/modules/Bio/EnsEMBL/Variation/Utils/Sequence.pm line 643.

Both of these error types are usually seen when using a FASTA file for retrieving sequence. There are a couple of steps you can take to
try to remedy them:

1. The index alongside the FASTA can become corrupted. Delete [fastafile].index and re-run VEP to regenerate it. By default this file is
located in your $HOME/.vep/[species]/[version]_[assembly] directory.

2. The FASTA file itself may have been corrupted during download; delete the fasta file and the index and re-download (you can use
the VEP installer to do this).

3. Older versions of BioPerl (1.2.3 in particular is known to have this) cannot properly index large FASTA files. Make sure you are using
a later (>=1.6) version of BioPerl. The VEP installer installs 1.6.924 for you.

If you still see problems after taking these steps, or if you were not using a FASTA file in the first place, please contact us.

Q: Why are chromosomes not found in annotation sources or synonyms?

WARNING: Chromosome 21 not found in annotation sources or synonyms on line 160

This can occur if the chromosome names differ between your input variant and any annotation source that you are using (cache,
database, GFF/GTF file, FASTA file, custom annotation file). To circumvent this you may provide VEP with a synonyms file. A synonym
file is included in VEP's cache files, so if you have one of these for your species you can use it as follows:

https://www.ensembl.org/info/docs/tools/index.html
http://lists.ensembl.org/mailman/listinfo/dev
https://onlinelibrary.wiley.com/doi/10.1002/humu.24298
https://www.ensembl.org/info/docs/tools/vep/script/vep_other.html#faster
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_uploaded_allele
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#install
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#install
https://www.ensembl.org/info/docs/tools/vep/script/vep_options.html#opt_synonyms

./vep -i input.vcf -cache -synonyms ~/.vep/homo_sapiens/114_GRCh38/chr_synonyms.txt

The file consists of lines containing pairs of tab-separated synonyms. Order is not important as synonyms can be used in both
"directions".

Q: Why do I get feature_type warnings from my GFF/GTF file?

WARNING: Ignoring 'five_prime_utr' feature_type from Homo_sapiens.GRCh38.111.gtf.gz GFF/GTF file.
This feature_type is not supported in VEP.

This can occur if you are using GFF/GTF file and the file contains a type that is not supported by VEP. Those lines are simply ignored.
However, in cases where the transcript model is incomplete the full model may be ignored.

Please try to use supported feature types as mentioned here

Q: Can I get gnomAD exomes and genomes frequencies in VEP?

Yes, see this guide.

Q: Why do I have issues connecting to Ensembl databases?

Could not connect to database homo_sapiens_core_63_37 as user anonymous using
[DBI:mysql:database=homo_sapiens_core_63_37;host=ensembldb.ensembl.org;port=5306] as a locator:
Unknown MySQL server host 'ensembldb.ensembl.org' (2) at
$HOME/src/ensembl/modules/Bio/EnsEMBL/DBSQL/DBConnection.pm line 290.

-------------------- EXCEPTION --------------------
MSG: Could not connect to database homo_sapiens_core_63_37 as user anonymous using
[DBI:mysql:database=homo_sapiens_core_63_37;host=ensembldb.ensembl.org;port=5306] as a locator:
Unknown MySQL server host 'ensembldb.ensembl.org' (2)

By default VEP is configured to connect to the public MySQL server at ensembldb.ensembl.org. Occasionally the server may break
connection with your process, which causes this error. This can happen when the server is busy, or due to various network issues.
Consider using a local copy of the database, or the caching system.

Q: Can I use VEP on Windows?

Yes - see the documentation for a few different ways to get the VEP running on Windows.

Q: Can I use VEP with custom species and assemblies not available in Ensembl?

Yes - you can run VEP on any data you have by providing a custom GFF/GTF annotation and FASTA file, like so:

./vep -i input.vcf --gff data.gff.gz --fasta genome.fa.gz

Q: Can I use VEP with T2T-CHM13 and other pangenome assemblies?

Yes - you can run VEP using Human Pangenome Reference Consortium (HPRC) data by following the instructions on how to use VEP
with pangenomes assemblies.

Q: Can I download all of the SIFT and/or PolyPhen predictions?

The Ensembl Variation database and the human VEP cache file contain precalculated SIFT and PolyPhen-2 predictions for every
possible amino acid change in every translated protein product in Ensembl. Since these data are huge, we store them in a compressed
format.

https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#gnomad
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#local
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#cache
https://www.ensembl.org/info/docs/tools/vep/script/vep_download.html#windows
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#gff
https://www.ensembl.org/info/docs/tools/vep/script/vep_cache.html#fasta
https://humanpangenome.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#pangenomes
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#pangenomes
https://www.ensembl.org/info/genome/variation/prediction/protein_function.html#nsSNP_data_format
https://www.ensembl.org/info/genome/variation/prediction/protein_function.html#nsSNP_data_format

There are different approaches to download SIFT/PolyPhen data:

Using the PolyPhen_SIFT plugin:

For any species with predictions in our Ensembl databases, the plugin is able to download the predictions data into a local
SQLite database for offline use. PolyPhen predictions are only available for human data.

We also provide a downloadble SQLite database containing PolyPhen/SIFT predictions based on Human Pangenome
Reference Consortium (HPRC) and GRCh38 assemblies. For more information, refer to Missense deleteriousness
predictions in HPRC assemblies.

Using our Perl API:

Fetch a ProteinFunctionPredictionMatrix for your protein of interest and then call its get_prediction() method to
get the score for a particular position and amino acid, looping over all possible amino acids for your position.

You would need to work out which peptide position your codon maps to, but there are methods in the TranscriptVariation
class that should help you (probably translation_start() and translation_end()).

https://www.ensembl.org/info/docs/tools/vep/script/vep_plugins.html#PolyPhen_SIFT
https://humanpangenome.org/
https://humanpangenome.org/
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#PolyPhen_SIFT
https://www.ensembl.org/info/docs/tools/vep/script/vep_example.html#PolyPhen_SIFT
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1ProteinFunctionPredictionMatrix.html
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1ProteinFunctionPredictionMatrix.html#af6346bcc5c4c28281e3c9a009ffcb15d
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1TranscriptVariation.html
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1BaseTranscriptVariation.html#acfc84f951919f445624545afbd5da0a8
https://www.ensembl.org/info/docs/Doxygen/variation-api/classBio_1_1EnsEMBL_1_1Variation_1_1BaseTranscriptVariation.html#ae32d5894a6466c7bf0fa02e6d200d038

